The schedule below represents my current best estimate concerning due dates (and everything else). I am providing this information to give you a general idea of the pace and timing of the class. This schedule will certainly change as the semester progresses.

Unless otherwise noted, all readings are from

Readings followed by (S) are supplemental. You should read them, but you won't be tested on that material.

WEEK DATE TOPIC READING/VIDEOS OUT IN
1. Uninformed Search 08-25 Introduction/Syllabus CH 1 HW1
08-27 Uninformed Search (.pdf)
search_exercises.pdf
(In ISAT/CS 143)
CH 3-3.5.2, 3.7.1-3.7.2
Search Videos
PA1 Reading Quiz
Background Survey
(Canvas)
08-29 Minimum Cost Search
Complexity Theory
Minimum Cost Exercises
CH 3.5.3
http://en.wikipedia.org/wiki/NP-complete
Videos


2. Informed Search 09-01 Discuss Turing Paper Computing Machinery and Intelligence
HW1
09-03 Best First Search
A*
astar_activity.pdf
CH 3.6, CH 3.7.3, 3.7.5
"Optimality of A*"
A* Videos
PA2 PA1
09-05 Minimax (.pdf)
minimax_activity.pdf
CH 10.2-10.2.2,10.3
Minimax Videos


3. Adversarial Search 09-08 Expectimax + Evaluation Functions
MIT AI:6.034 Games and Utility Handout
(Exercises 1 and 3)
CH 6.1.4 (s)
Videos
Poster Project
09-10 Constraint Satisfaction Problems
(In ISAT/CS 143)
CH 4-4.5
Skim CH 4.6-4.7
CSP Videos


09-12 Propositional Logic CH 5-5.2.2
Propositional Logic Videos

PA2A
4. Propositional Logic 09-15 No Class
CONFERENCE



09-17 Prep for Review
CONFERENCE



09-19 Exam Review
CONFERENCE



5. Predicate Logic 09-22 Propositional Resolution
resolution_exercises.pdf
Automatic Theorem Proving
Propositional Resolution Videos


09-24 Midterm #1


09-26 Predicate Logic Predicate Logic Review (section 4) (s)
CH 12-12.3.1
Predicate Logic Video
PA3 PA2B
6. Machine Learning 09-29 Inference in Predicate Logic
pred_logic_proofs.pdf
pred_logic_proofs.tex
CH 12.3.2-12.4
Resolution Tutorial
Videos


10-01 Linear Algebra (.pdf)
linear_algebra_exercises.pdf
Linear Algebra Review and Reference (.pdf)
sections 1-3.7, (skip 3.6)
Linear Algebra Video


10-03 Gradient Descent +Linear Regression (.pdf) CH 4.10.2, 7-7.2.1, 7.3.2
Calculus Refresher (.pdf) (9-14) (s)
Videos


7. Neural Networks 10-06 Numpy exercises (.pdf)
numpy_exercises.py
Numpy Tutorial
Proof HW
10-08 Classification (.pdf)
single_layer_network.py
usps.npy
CH 7.3.2
Videos


10-10 Multi-layer Neural Networks (.pdf) CH 7.4.1
Videos


8. Misc. Learning 10-13 Validation (.pdf)
K-Nearest Neighbors (.pdf)
7.5 (skip 7.5.1)
7.6
Videos


10-15 Work Day CH 7.6
PA3
10-17 Support Vector Machines
lectures/svm/svm_demos.py
What is a Support Vector Machine?
Support Vector Machines: Hype or Halleluja? (s)

Poster Proposal
9. Probabilistic AI 10-20 Start PA4 Kaggle Python Tutorial PA4
10-22 Probability + Bayes Rule
probability_review.pdf
CH 6.1-6.2
Video


10-24 Belief Nets + Naive Bayes (.pdf) CH 6.3, 7.3.3

10. Markov Models 10-27 Review Session
naive_bayes_exercise.pdf



10-29 EXAM 2


10-31 Markov Models (.pdf)
markov_model_exercises.pdf
CH 6.5-6.5.2
Video


11. Reinforcement
Learning
11-03 Hidden Markov Models and
Dynamic Belief Networks
filtering_exercise.pdf
CH 6.5.3-6.6
Videos


11-05 Markov Decision Processes
mdp_exercises.pdf
Value Iteration Demo
CH 9.5-9.5.2
Video


11-07 Continue MDP's

PA4
12. Genetic Algorithms 11-10 Q-Learning
Q-Learning Demo
q_learning_activity.pdf
CH 11.3-11.3.5
Video
PA5 Poster Bibliography
11-12 Local Search and Genetic Algorithms
GA Demo
CH 4.8-4.9

11-14 CONFERENCE


13. Poster Sessions 11-17 Approximate Q-Learning Activity (.pdf)

Poster Submission
11-19 Poster Session


11-21 Poster Session


14. Thanksgiving 11-24 THANSKGIVING


11-26 THANSKGIVING


11-28 THANSKGIVING


15. Ethical Issues
and Review
12-01 K-Means and EM (.pdf) CH 11-11.1.3
Videos


12-03 Ethics and AI The Ethics of Artificial Intelligence (.pdf)
Humans Need Not Apply (video)


12-05 Review Session

PA5

12-10 Final Exam 1:00-3:00PM