Clustering

CS 444

Some material on these is slides borrowed from Andrew Moore's
machine learning tutorials located at:

http://www.cs.cmu.edu/~awm/tutorials/



Clustering

* The problem of grouping unlabeled data on the basis
of similarity.

* A key component of data mining — is there useful
structure hidden in this data?

* Applications:

e Image segmentation, document clustering, protein class
discovery, compression
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K-means

Ask user how many clusters
they’d like. (e.g. k=5)

Randomly guess k cluster
Center locations

Each datapoint finds out
which Center it’s closest
to. (Thus each Center
“owns” a set of
datapoints)
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K-means
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they’d like. (e.g. k=5)

Randomly guess k cluster
Center locations

Each datapoint finds out
which Center it’s closest
to.

Each Center finds the
centroid of the points it
owns
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K-means
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Ask user how many clusters
they’d like. (e.g. k=5)

Randomly guess k cluster
Center locations

Each datapoint finds out
which Center it’s closest
{o.

Each Center finds the
centroid of the points it
OWnS. ..

...and jumps there

...Repeat until terminated!
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K-means
Start

Advance apologies: in Black
and White this example will
deteriorate

Example generated by Dan
Pelleg’s super-duper fast K-
means system:

Dan Pelleg and Andrew
Moore. Accelerating
Exact k-means
Algorithms with
Geometric Reasoning.
Proc. Conference on
Knowledge Discovery in
Databases 1999,
(KDD99) (available on
www.autonlab.org/pap.html)
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K-means

continues...
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K-Means

This can be seen as attempting to minimize the total
squared difference between the data points and

their clusters.
It is guaranteed to converge.
It is not guaranteed to reach a global minima.

Commonly used because:

e [tiseasy to code

e [t i1s efficient



Parameterized Probability Distributions

* Parameterized probability distribution:
P(X)=P(X|0)

* 0 - The parameters for the distribution.

* Trivial discrete example: X is a Boolean random

variable g indicates the probability that it will be true.




Fitting a Distribution to Data

e Assume we have a set of data points X to x.

* The goal is to find a distribution that fits that data.

|.e. that could have generated the data.
* One possibility:

— Maximum likelihood estimate (MLE) find the parameters
that maximize the probability of the data:

A

0 =argmax P(x, x,

. x,|0)



ML Learning

e We will assume that x to x are iild — independent
and identically distributed.

* So we can rewrite our problem like this (factorization):

0= argmaxHP (x,]0)

i=1

* Then we can apply our favorite log trick giving us log
likelihood:

0= argmax Z log(P(x|0))=argmax LL
0

i=1



Maximizing Log Likelihood

* Just another instance of function maximization.

* One approach, set the partial derivatives to 0 and

solve: aﬂ:o
00,

OLL
00,

0

OLL _
00,

0

* If you can't solve it, gradient descent, or your favorite

search algorithm.



Silly Example

* Parameterized coin: Theta — probability of heads:

* d -- vector of toss data, h number of heads, t
number of tails.

P(d|9):ﬁP (d]0) = 0"(1-0)

=

L(d|0) = log(P(d|0)) = hlog0+tlog(1—0)

oL _h_t v L 4= I
00 0 1-0 h+t
d
Remember: —log(x)=1/x
dx

Example borrowed from Russel & Norvig



EM

* A general approach to maximum likelihood learning
in cases of missing data.

* E.g. clustering... Each data point REALLY comes
from some cluster, but that data is missing.



EM

Hidden variables are Z, observed variables are X.
Guess an assignment to our parameters: 9.

Expectation-Step:
— Compute the expected value of our hidden variables
E[Z].
Maximization-Step

— Pretend that E[Z] is the true value of Z and use

maximum likelihood to calculate a new §



Gaussian Mixture Example

We have this: Life would be easier if we had
this:
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EM for GMM

« E-Step (p is the probability that point /i was

l,]

generated by mixture component j )

plx|p.,2)m.

_ gyl
pi,jK

plxlu,, 2 )m,
k=1



EM for GMM

* M Step: Update the parameters:

N
P, X, 2.0 (x—u ) (x, )
i=1 i=1
n = D> =

J

N
2.7, 2.7,

=1

-~
I
p—
-~



Gaussian
Mixture
Example:
Start

Advance apologies: in Black and
White this example will be
incomprehensible

http://www.cs.cmu.edu/~awm/tutorials/



After first

Iiteration
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After 2nd

Iiteration
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After 3rd

Iiteration
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After 4th

Iiteration
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After 5th

Iiteration
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After 6th

Iiteration
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After 20th

Iteration

http://www.cs.cmu.edu/~awm/tutorials/
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