Clustering

CS 444

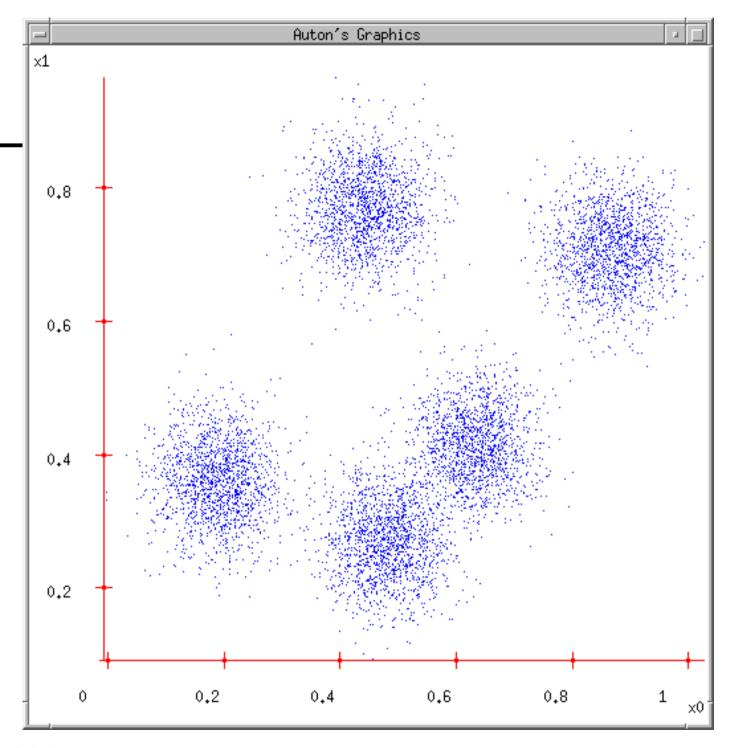
Some material on these is slides borrowed from Andrew Moore's machine learning tutorials located at:

http://www.cs.cmu.edu/~awm/tutorials/

Clustering

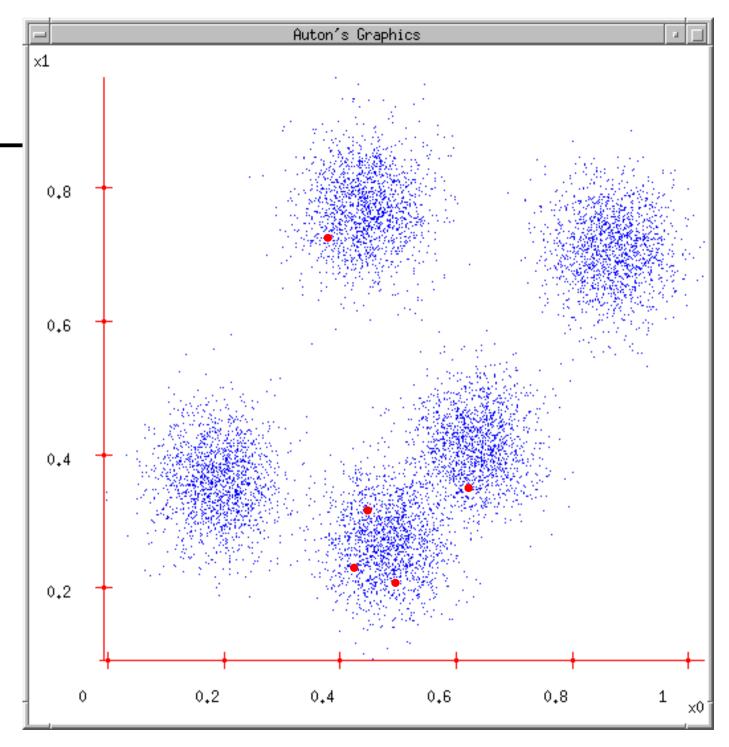
- The problem of grouping unlabeled data on the basis of similarity.
- A key component of data mining is there useful structure hidden in this data?
- Applications:
 - Image segmentation, document clustering, protein class discovery, compression

Ask user how many clusters they'd like. (e.g. k=5)



Ask user how many clusters they'd like. (e.g. k=5)

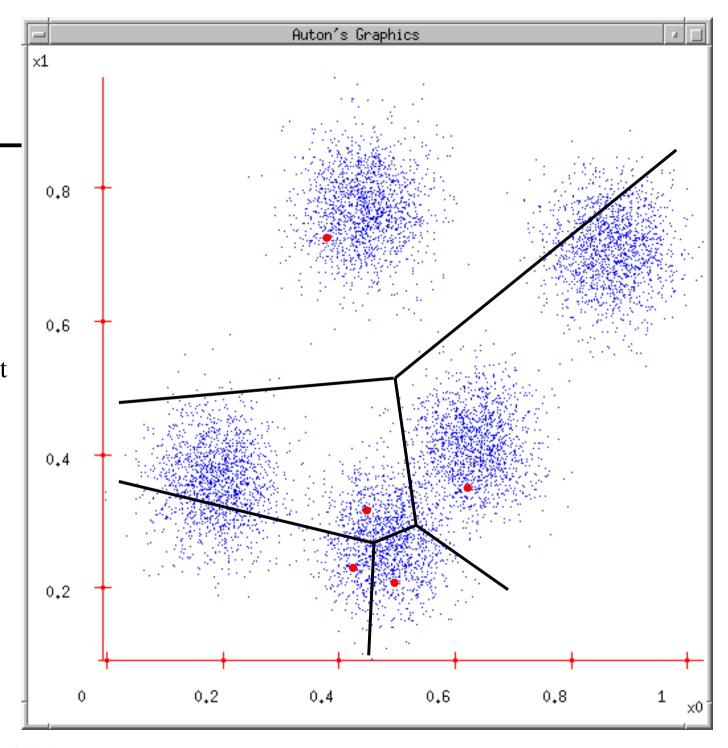
Randomly guess k cluster Center locations



Ask user how many clusters they'd like. (e.g. k=5)

Randomly guess k cluster Center locations

Each datapoint finds out
which Center it's closest
to. (Thus each Center
"owns" a set of
datapoints)

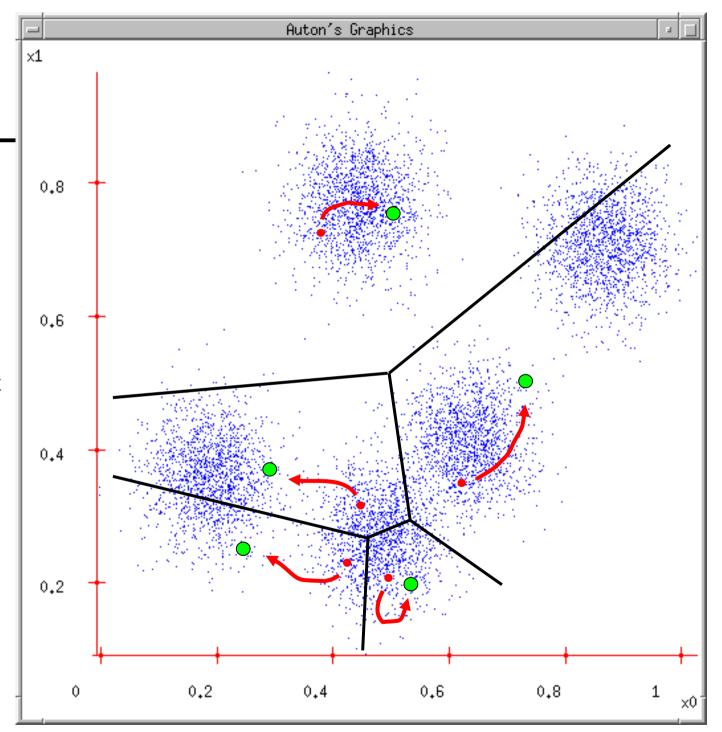


Ask user how many clusters they'd like. (e.g. k=5)

Randomly guess k cluster Center locations

Each datapoint finds out which Center it's closest to.

Each Center finds the centroid of the points it owns



Ask user how many clusters they'd like. (e.g. k=5)

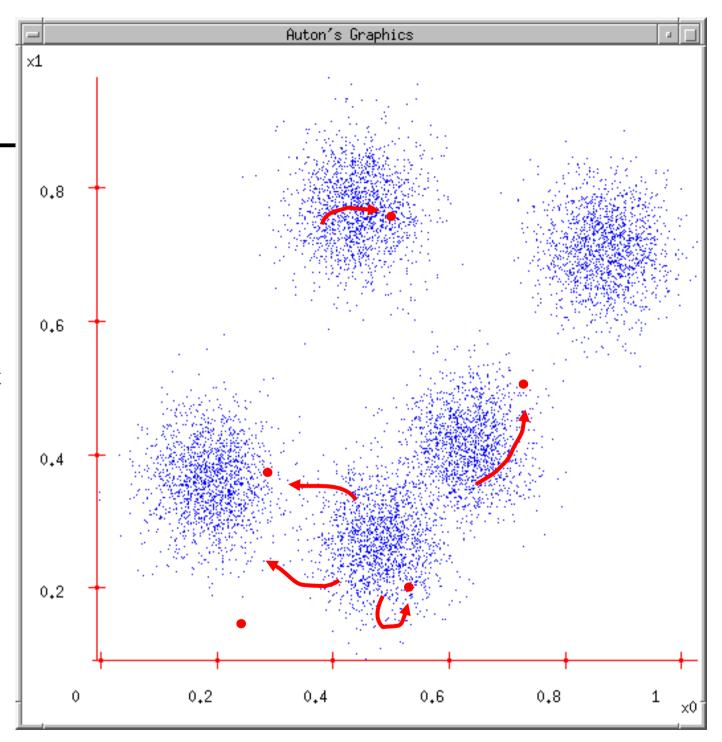
Randomly guess k cluster Center locations

Each datapoint finds out which Center it's closest to.

Each Center finds the centroid of the points it owns...

...and jumps there

...Repeat until terminated!

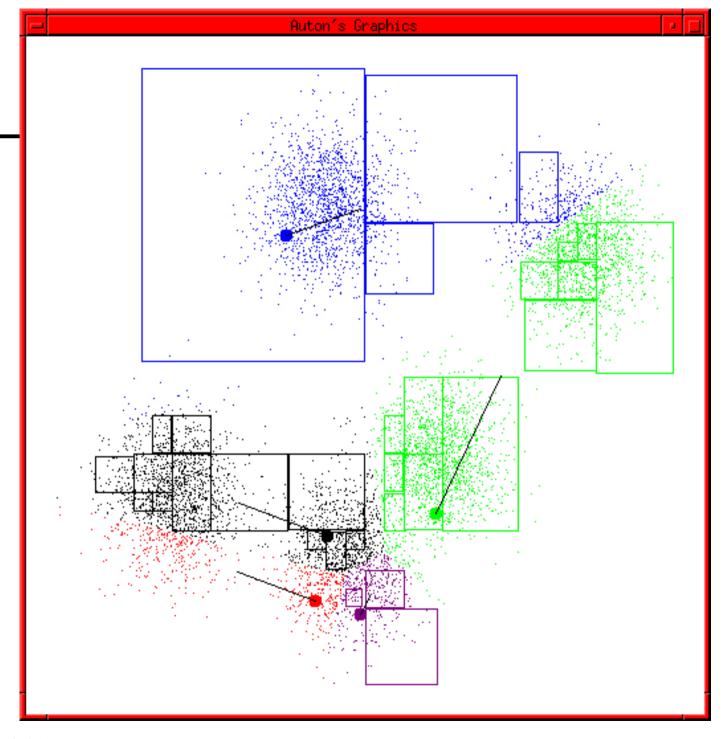


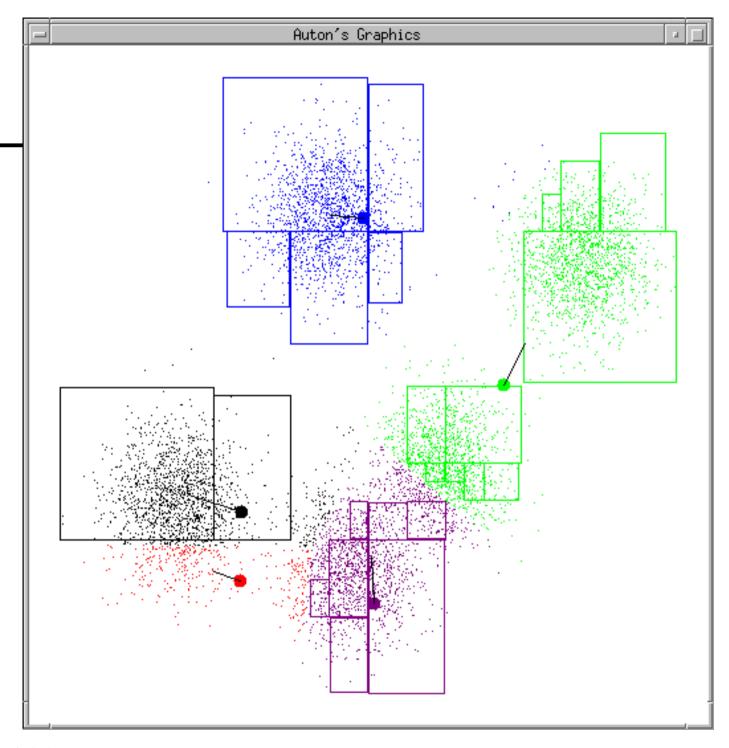
K-means Start

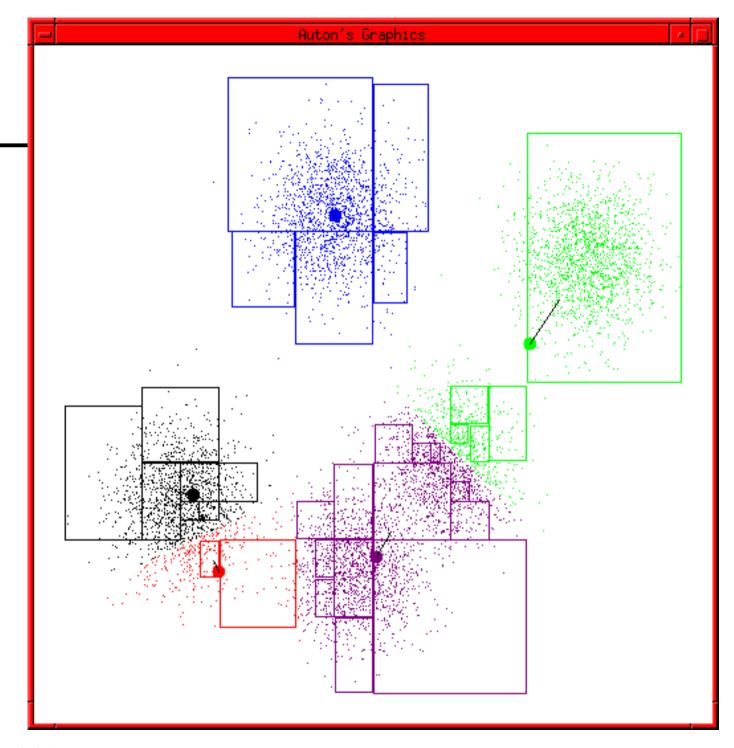
Advance apologies: in Black and White this example will deteriorate

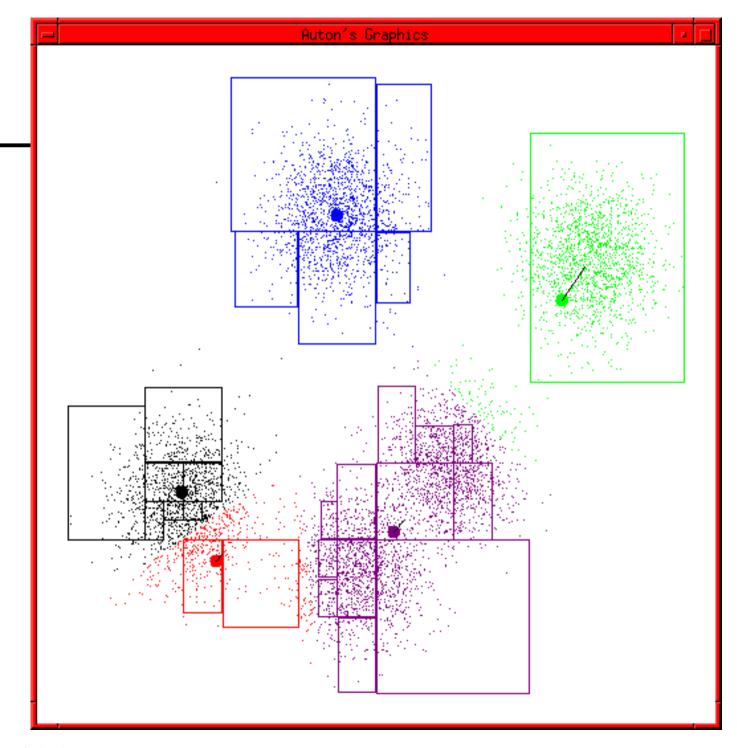
Example generated by Dan Pelleg's super-duper fast K-means system:

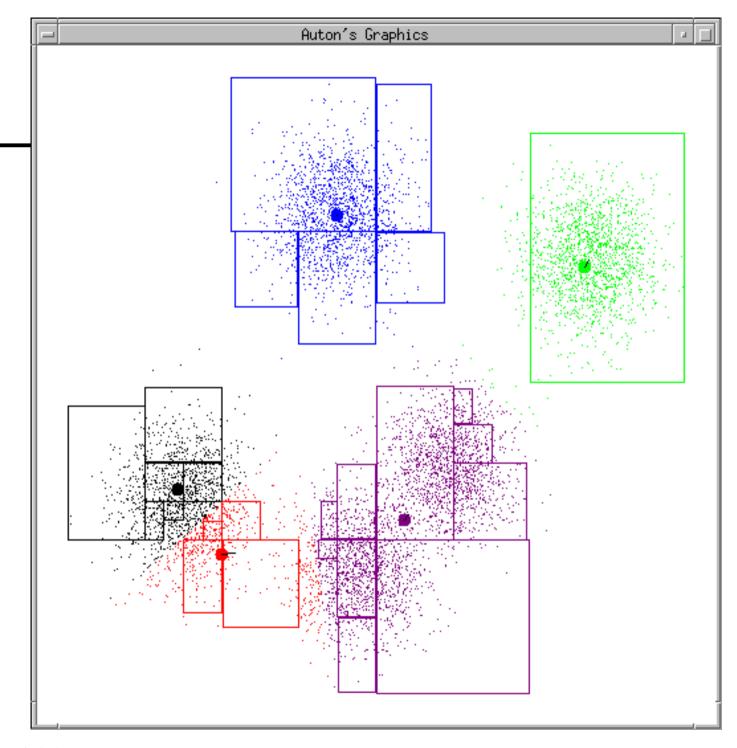
Dan Pelleg and Andrew
Moore. Accelerating
Exact k-means
Algorithms with
Geometric Reasoning.
Proc. Conference on
Knowledge Discovery in
Databases 1999,
(KDD99) (available on
www.autonlab.org/pap.html)

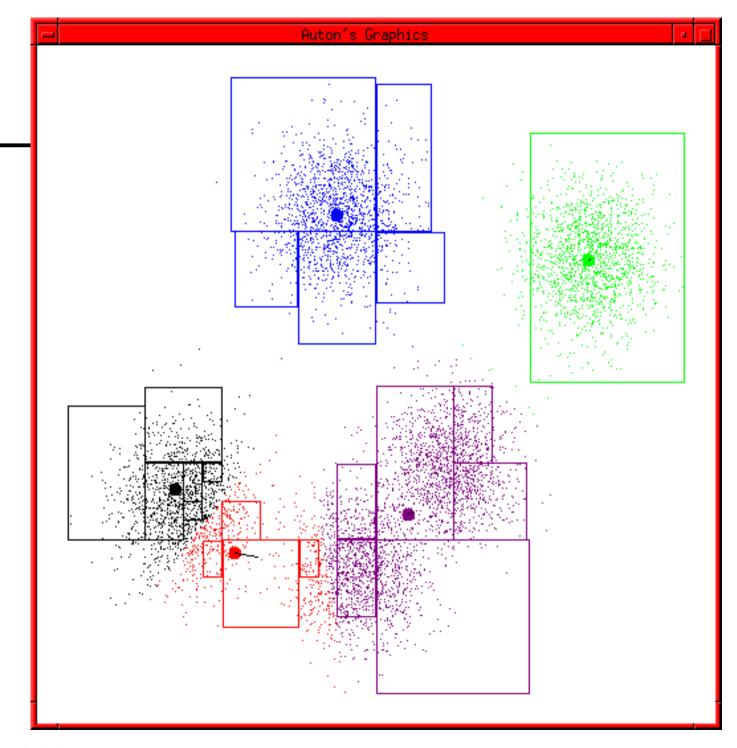


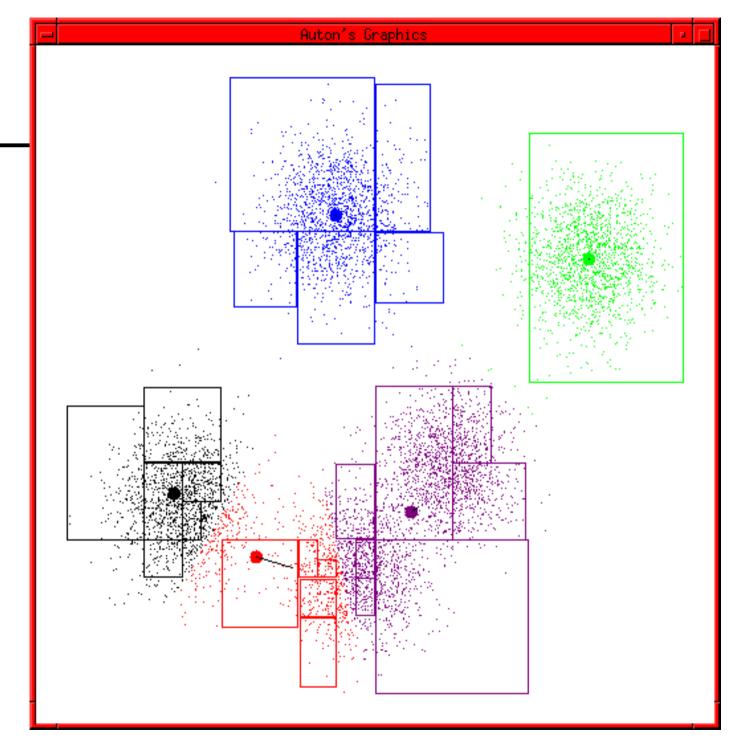


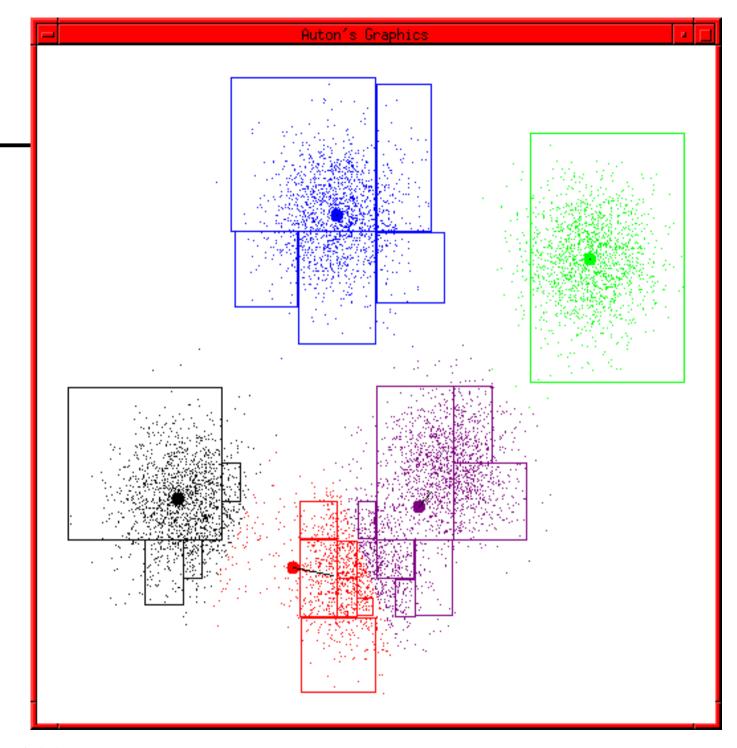


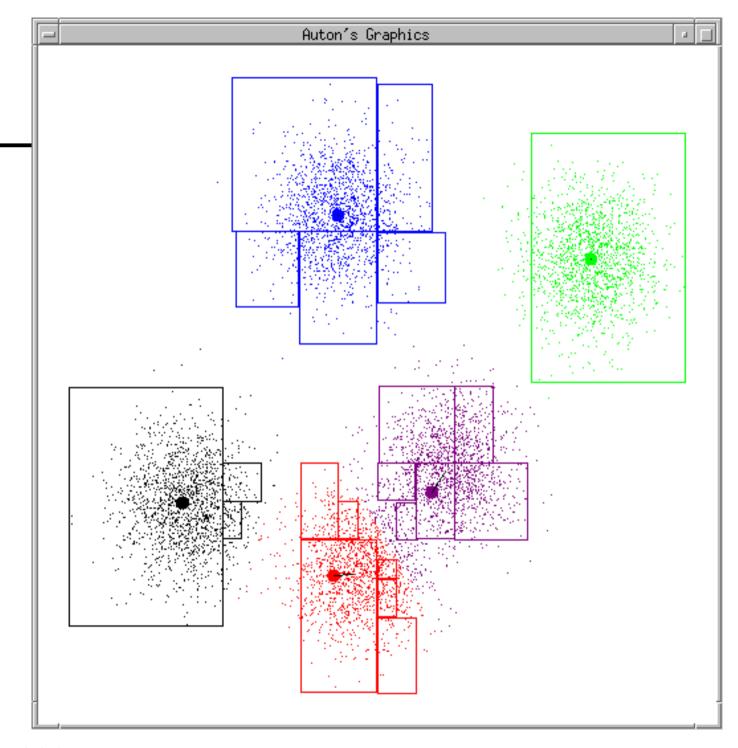




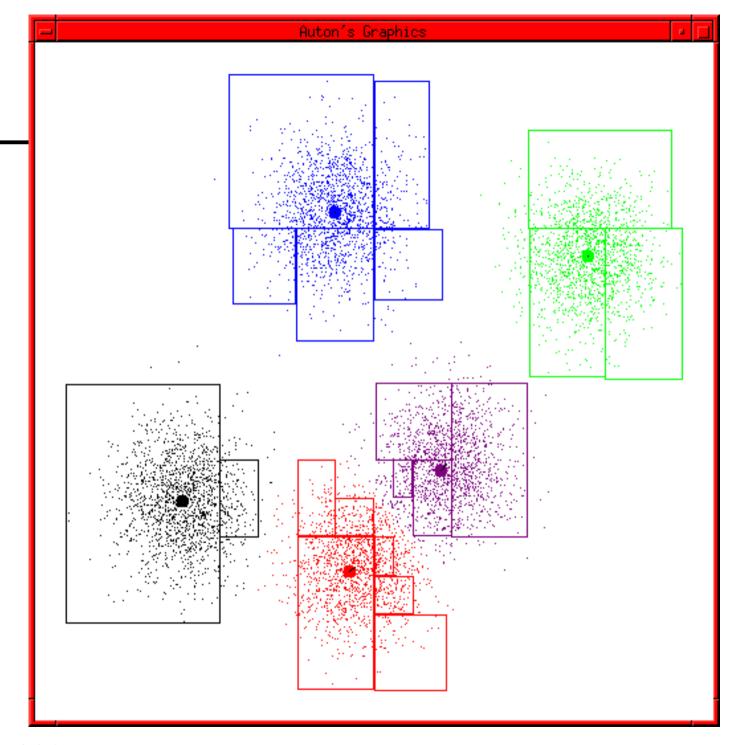








K-means terminates



K-Means

- This can be seen as attempting to minimize the total squared difference between the data points and their clusters.
- It is guaranteed to converge.
- It is not guaranteed to reach a global minima.
- Commonly used because:
 - It is easy to code
 - It is efficient

Parameterized Probability Distributions

Parameterized probability distribution:

$$P(X) = P(X|\theta)$$

- θ The parameters for the distribution.
- Trivial discrete example: X is a Boolean random variable θ indicates the probability that it will be true.

$$\begin{array}{ccccc}
\rho = .6 & p(X = TRUE \mid \theta = .6) = .6 \\
p(X = FALSE \mid \theta = .6) = .4 & \\
\rho = .1 & p(X = TRUE \mid \theta = .1) = .1 \\
p(X = FALSE \mid \theta = .1) = .9 & \\
\end{array}$$

Fitting a Distribution to Data

- Assume we have a set of data points x_1 to x_N .
- The goal is to find a distribution that fits that data.
 I.e. that could have generated the data.
- One possibility:
 - Maximum likelihood estimate (MLE) find the parameters that maximize the probability of the data:

$$\hat{\theta} = \underset{\theta}{argmax} P(x_{1}, x_{2}, \dots, x_{N} | \theta)$$

ML Learning

- We will assume that x_1 to x_N are **iid** independent and identically distributed.
- So we can rewrite our problem like this (factorization):

$$\hat{\theta} = \underset{\theta}{argmax} \prod_{i=1}^{N} P(x_i | \theta)$$

 Then we can apply our favorite log trick giving us log likelihood:

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{N} \log(P(x_i|\theta)) = \underset{\theta}{\operatorname{argmax}} LL$$

Maximizing Log Likelihood

- Just another instance of function maximization.
- One approach, set the partial derivatives to 0 and solve: $\frac{\partial LL}{\partial L} = 0$

$$\frac{\partial LL}{\partial \theta_2} = 0$$

 $\partial \theta_1$

. . .

$$\frac{\partial LL}{\partial \theta_K} = 0$$

• If you can't solve it, gradient descent, or your favorite search algorithm.

Silly Example

- Parameterized coin: Theta probability of heads:
- d -- vector of toss data, h number of heads, t
 number of tails.

$$P(\boldsymbol{d}|\boldsymbol{\theta}) = \prod_{i=1}^{N} P(\boldsymbol{d}_{i}|\boldsymbol{\theta}) = \boldsymbol{\theta}^{h} (1-\boldsymbol{\theta})^{t}$$

$$L(\boldsymbol{d}|\boldsymbol{\theta}) = log(P(\boldsymbol{d}|\boldsymbol{\theta})) = hlog\,\boldsymbol{\theta} + tlog(1-\boldsymbol{\theta})$$

$$\frac{\partial L}{\partial \boldsymbol{\theta}} = \frac{h}{\boldsymbol{\theta}} - \frac{t}{1-\boldsymbol{\theta}} = 0 \quad \rightarrow \quad \boldsymbol{\theta} = \frac{h}{h+t}$$

Remember:
$$\frac{d}{dx}\log(x)=1/x$$

EM

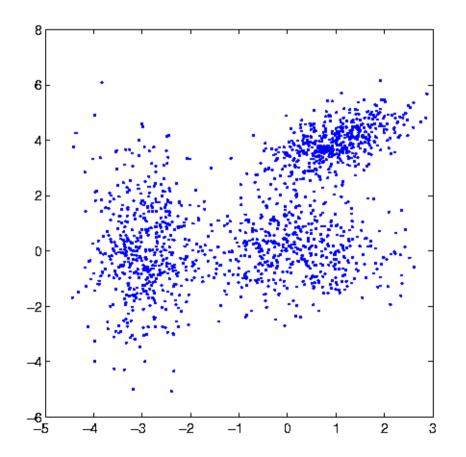
- A general approach to maximum likelihood learning in cases of missing data.
- E.g. clustering... Each data point REALLY comes from some cluster, but that data is missing.

EM

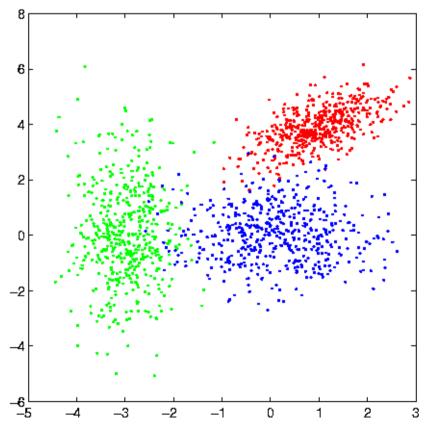
- Hidden variables are Z, observed variables are X.
- Guess an assignment to our parameters: $\hat{\theta}$.
- Expectation-Step:
 - Compute the expected value of our hidden variables
 E[Z].
- Maximization-Step
 - Pretend that E[Z] is the true value of Z and use maximum likelihood to calculate a new $\hat{\theta}$

Gaussian Mixture Example

We have this:



Life would be easier if we had this:



EM for GMM

• E-Step $(p_{i,j})$ is the probability that point i was generated by mixture component j

$$p_{i,j} = \frac{p(x_i | \mu_j, \Sigma_j) \pi_j}{\sum_{k=1}^{K} p(x_i | \mu_k, \Sigma_k) \pi_k}$$

EM for GMM

• M Step: Update the parameters:

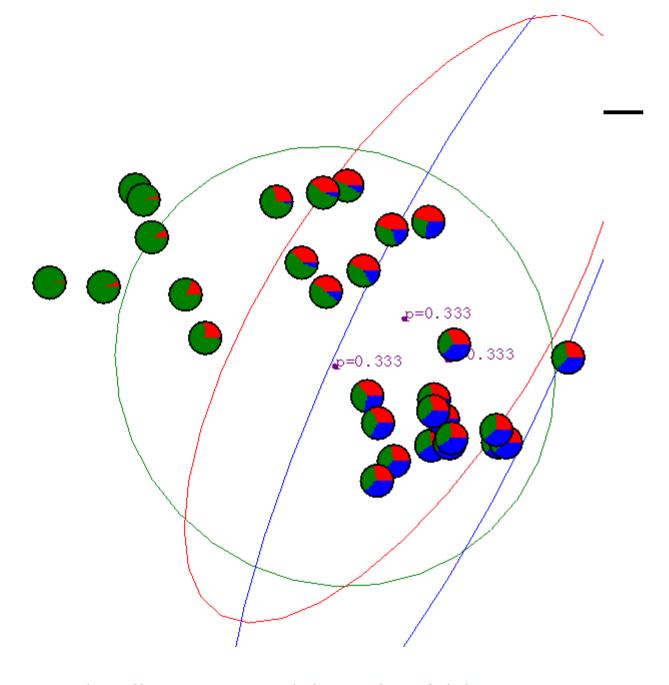
$$\mu_{j} = \frac{\sum_{i=1}^{N} p_{i,j} x_{i}}{\sum_{i=1}^{N} p_{i,j}}$$

$$\mu_{j} = \frac{\sum_{i=1}^{N} p_{i,j} x_{i}}{\sum_{i=1}^{N} p_{i,j}} \qquad \qquad \sum_{j=1}^{N} p_{i,j} (x_{i} - \mu_{j}) (x_{i} - \mu_{j})^{T} \sum_{i=1}^{N} p_{i,j}$$

$$\pi_{j} = \frac{1}{N} \sum_{i=1}^{N} p_{i,j}$$

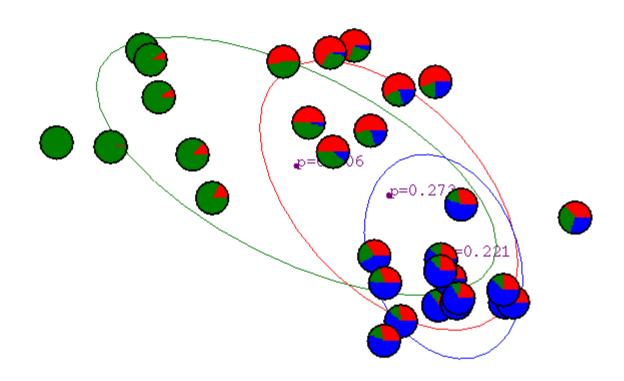
Gaussian Mixture Example: Start

Advance apologies: in Black and White this example will be incomprehensible

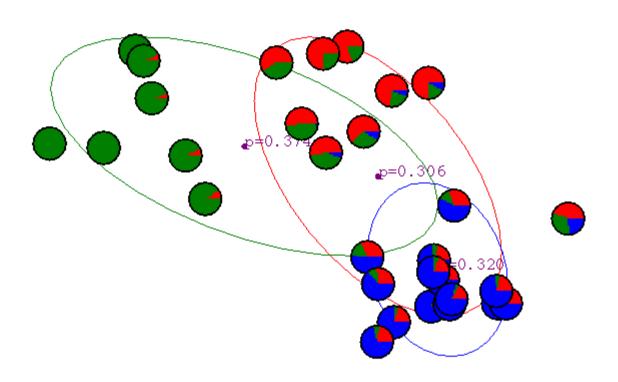


http://www.cs.cmu.edu/~awm/tutorials/

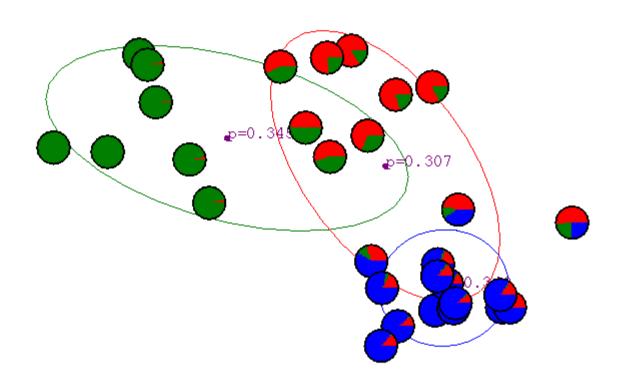
After first iteration



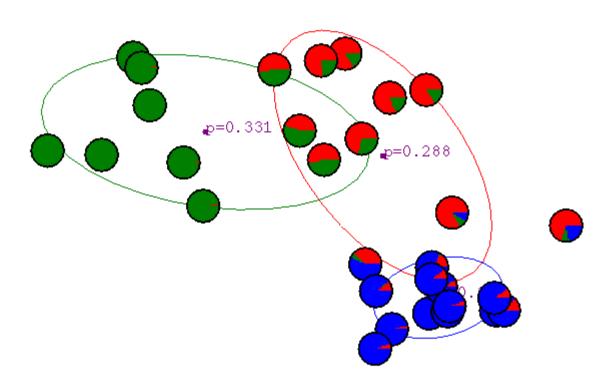
After 2nd iteration



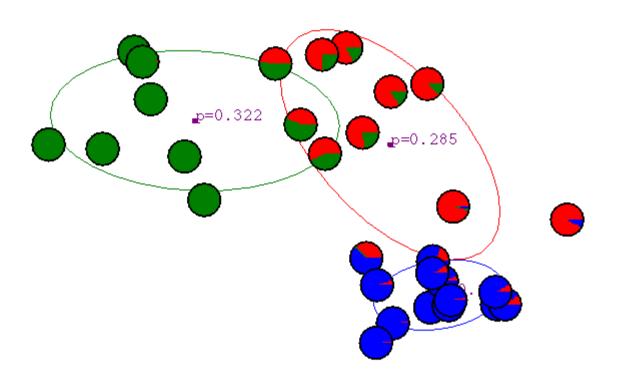
After 3rd iteration



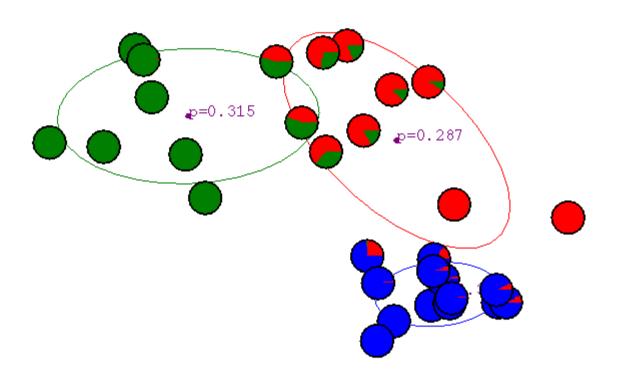
After 4th iteration



After 5th iteration



After 6th iteration



After 20th iteration

