
Support Vector Machines

http://www.cs.cmu.edu/~awm/tutorials/

Some material on these is slides borrowed from Andrew Moore's
excellent machine learning tutorials located at:

Where Should We Draw the Line?
?

?

?

Margins

● Margin – The distance from the decision boundary to
the closest point.

}

Closest Point

Margin

Support Vector Machine

● Find the boundary with the maximum margin.
● The points that determine the boundary are the

support vectors.

Support Vectors

Finding the Boundary...
● The equation for a plane:

● Suppose we have two classes, -1 and 1, we can use
this equation for classification:

w⋅xb=0

c  x=sign w⋅xb

Visualizing the Boundary...

w⋅xb=0
w⋅xb0

w⋅xb0

● We can get our perceptron to do this.

Creating A Margin
● Input-output pairs: (xi, ti), ti = -1 or 1
● We don't just want our samples to be on the right

side, we want them to be some distance from the
boundary

w⋅xib≥1 for t i=1

t i w⋅xib≥1

w⋅xib0 for t i=1
w⋅xib0 for t i=−1

Instead of this

We want this
w⋅xib≤−1 for t i=−1

Which is the same as this

Two Boundaries...

w⋅xb=−1
w⋅xb1

w⋅xb−1

w⋅xb=1

w⋅xb=0

Minimization

● The distance from a point, x, to the boundary can be
expressed as:

● This can be maximized by minimizing ||w||.

● Minimize subject to , for all i.

∣w⋅xb∣

∥w∥

1

2
∥w∥

2

t i w⋅xib≥1

Determines the size of the margin Enforces correct classification

Quadratic Programming
1

2
∥w∥

2

t i w⋅xib≥1● Minimize subject to , for all i.

● Minimizing a quadratic function subject to linear
constraints... So What?

● This is a (convex) quadratic programming problem.
● What does that mean?

– No local minima.
– Good solvers exist.

Lagrange Multipliers

● Minimize subject to for all i.

●

1

2
∥w∥

2
t i w⋅xib≥1

Now, apply some mathematical hocus pocus....

Dual Formulation

● Maximize:

● Once this is done we can get our weights according to:

LD=∑
i

i −
1
2 ∑i

∑
j

i  j t i t j  xi⋅x j

subject to and 
i
≥0 ∑

i

i t i=0

w=∑
i

i t i xi

Two Things to Notice

● Most of the will be 0. Those that are non-zero
correspond to support vectors.

● The inputs only show up in the form of dot products.

w=∑
i

i t i xi


i

LD=∑
i

i −
1
2 ∑i

∑
j

i  j t i t j  xi⋅x j

What About This Case?

A 1-D Classification Problem

x=0

http://www.cs.cmu.edu/~awm/tutorials/

● Where will an SVM put the decision boundary?

1-D Problem Continued

x=0

http://www.cs.cmu.edu/~awm/tutorials/

● No problem.
● Equidistant from the two classes.

The Non-Separable Case

● Now we have a problem...

x=0

http://www.cs.cmu.edu/~awm/tutorials/

Increase the Dimensionality

● Use our old data
points xi to create a
new set of data points
zi.

● zi = (xi , xi
2)

x=0
http://www.cs.cmu.edu/~awm/tutorials/

Increase the Dimensionality

● Now the data is
separable.

x=0
http://www.cs.cmu.edu/~awm/tutorials/

The Blessing of Dimensionality (?)

● This works in general.
● When you increase the dimensionality of your data,

you increase the chance that it will be linearly
separable.

● In an N-1 dimensional space you should always be able
to separate N data points. (Unless you are unlucky.)

Let's do it!

● Define a function that maps our low
dimensional data into a very high dimensional space.

● Now we can just rewrite our optimization to use these
high dimensional vectors:

● What's the problem?

 x

subject to and 0≤
i
≤C ∑

i

i t i=0

LD=∑
i

i −
1
2 ∑i

∑
j

i  j t i t j [ xi ⋅ x j]

The Kernel Trick

● It turns out we can often find a kernel function K such
that:

● In fact, almost any kernel function corresponds to a
dot product in some space.

● Now we have:

● Support vector machines are also called kernel
machines.

K x
i
, x

j
= x

i
⋅ x

j


subject to and 0≤
i
≤C ∑

i

i t i=0

LD=∑
i

i −
1
2 ∑i

∑
j

i  j t i t j K  xi , x j 

The Kernel Trick

● We get to perform classification in very high
dimensional spaces for almost no additional cost.

● Some Kernels:
– Polynomial:

– Radial Basis Function:

– Sigmoidal:

K x
i
, x

j
=x

i
⋅x

j
1

q

K x
i
, x

j
=tanh 2 x

i
⋅x

j
1

K xi , x j=exp 〚−∥x
i
−x

j
∥2


2 〛

Nice Things about SVM's

● Good generalization because of margin maximization.
● Not many parameters to pick.

– No learning rate, no hidden layer size.
– Just C, and possibly some parameters for kernel function.
– You also have to pick a kernel function.

● No problems with local minima.
● What about SVM regression? It's possible, but we

won't talk about it.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

