(CS444 Expected Utility and Markov Decision Processes

1. Expected utility can be defined as follows:

EU(a) =Y U(s)P(s | a)

SES

where a represents an action choice, U is a utility function, and S is a random variable
that represents possible outcomes.

Consider the following xked comic:

DID THE SUN JUST BPLODE?
(ITS NIGHT, 50 WERE NOT SURE.)

THIS NELTRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.

( THEN, TROLS TWo DICE. IF THEY

BOTH COME UP Six, ITUES TOUS:

OHERWISE, IT TELLS THE TRUTL.

LETS TRY.

DETECTOR! HAS THE
SN GONE NVA? —

(0

FREQUENTIST STATSTICIAN: BAYEBIAN STATISTIOAN:

THE PROGABILITY OF THIS RESULT

HAFPENING BY CHANCE 15 3;=0027 BET YOU $50
GNCE p<0.05, T CONCLUDE T HASNY
THAT TE SUN HAS EXPLODED. |

Assuming that the Bayesian statistician estimates the prior probability of a sun explo-
sion to be 1/1,000,000,

e what probability will he assign to the proposition that the sun has exploded after
detector says YES.? What probability will he assign to the proposition that the
sun has not exploded?

e What is the expected utility (in dollars) of his $50 bet?



2. Consider the MDP represented by the following simple maze:

A S
75

B
1.0

The robot in this maze starts at location S. At each time step he has the option of
taking one of two actions LEFT, or RIGHT. These actions deterministically move the
robot one space to the left or right. When the robot exits state A, he receives a reward
of 0.75. When he exits state B he receives a reward of 1.0. Any action taken in states
A or B end the trial: the robot exits the maze and no more steps are taken. Assume a
discount factor of v =.9. As a reminder, here is the equation for the utility of a state
under the optimal policy in an MDP:

V(s) = mgxz P(s'|s,a)(R(s,a,s") +~vV(s"))

e In each square of the maze, write the utility (expected discounted reward under
the optimal policy) of being in that state. States A and B are already completed.
(1pt)

e In each square of the maze (other than A and B) indicate the optimal action for
the robot to take.

3. Fill out the following tables with the appropriate Q-values for each action in each state.

Assume the same reward function and transition model as the previous question. As a
reminder, the constraint equation for Q-values is:

Q(‘S?a) = ZP(‘S,’Sa a)(R(Sv a, 5/) + HZ‘?}XVQ(Slv CL/))

75].75 | 1.0/1.0




4. In the previous two questions, the robot’s actions were deterministic, which is not really
in the spirit of Markov Decision Processes. For this question, we will consider the same
environment, but we will assume that the robot’s actions have probabilistic outcomes.
In particular, we will assume that the robot’s actions only succeed with a probability
of .9, otherwise the robot stays in the same location. (Actions taken in states A and B
are still deterministic).

As a reminder, the update rule for value iteration can be written as follows:
Vier1(s) + maXZT(S, a,s") [R(s,a, ") +yVi(s')]
@ /
S

Perform three steps of value iteration given the following initial values:
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