Single-Layer Logistic Network

Regression vs. Classification

- Now we have the machinery to fit a line (plane, hyperplane) to a set of data points - regression.
- What about classification?
- First thought:
 - For each data point x, set the value of y to be 0 or
 1, depending on the class
 - Use linear regression to fit the data.
 - During classification assume class 0 if y < .5, assume class 1 if y > = .5.

Classification Example

 The least squares fit does not necessarily lead to good classification.

Apply a Sigmoid to the Output

• Let's apply a squashing function to the output of the network: $h(x)=g(\boldsymbol{w}^T\boldsymbol{x})$, where $g(a)=\frac{1}{(1+e^{-a})}$

The New Update Rule...

The partial derivative (for a particular example):

$$\begin{split} Error(\mathbf{w}) &= \frac{1}{2} (y - g(\mathbf{w}^T \mathbf{x}))^2 \\ &\frac{\partial Error(\mathbf{w})}{\partial w_i} = (y - g(\mathbf{w}^T \mathbf{x})) \frac{\partial}{\partial w_i} ((y - g(\mathbf{w}^T \mathbf{x}))) \\ &= -(y - g(\mathbf{w}^T \mathbf{x})) g'(\mathbf{w}^T \mathbf{x}) x_i \end{split}$$

- The new update rule: $w_i \leftarrow w_i + \eta(y g(\boldsymbol{w}^T \boldsymbol{x})) g'(\boldsymbol{w}^T \boldsymbol{x}) x_i$
- Vector version: $\mathbf{w} \leftarrow \mathbf{w} + \eta (y g(\mathbf{w}^T \mathbf{x})) g'(\mathbf{w}^T \mathbf{x}) \mathbf{x}$

(This is a version of "logistic regression" a classical technique from statistics.)

Perceptrons

- Late 50's to mid 60's Rosenblatt's Perceptrons
 (Original paper: The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain, Psychological Review, 65:386-408)
- Original perceptron formulation used a threshold instead of a sigmoid:

$$g(a) = \begin{bmatrix} 1 & \text{if } a > 0 \\ 0 & \text{if } a \le 0 \end{bmatrix}$$

• Learning rule: $w \leftarrow w + \alpha (t - g(w^T x)) x$

The Rise and Fall of Perceptrons

- 1969 Minsky and Papert write <u>Perceptrons</u>.
 - Pretty much kills off neural network research.

The Problem...

• The perceptron (any single layer neural network) only works if the classes are linearly separable.

<u>A</u>	В	OUT
0	0	0
0	1	1
1	0	1
1	1	0

