CS444 A* Exercises

- 1. Consider the problem of finding a path in the grid shown in the figure below from the position s to the position g. A piece can move on the grid horizontally and vertically, one square at a time. No step may be made into a forbidden shaded area.¹
 - (a) Number the nodes expanded, in order, for a best-first search from s to g. Manhattan distance should be used as the evaluation function. The Manhattan distance between two points is the distance in the x-direction plus the distance in the ydirection. It corresponds to the distance traveled along city streets arranged in a grid. Assume multiple-path pruning. What is the first path found?

	g			
		S		

¹This question is adapted from *Artificial Intelligence: Foundations of Computational Agents*, David Poole and Alan Mackworth, Cambridge University Press, 2010.

(b) Number the nodes in order for an A^{*} search, with multiple-path pruning, for the same graph. What is the path found?

	g			
		S		

2. The 8-puzzle is a game of sliding tiles in which the player attempts to move the tiles into the correctly ordered sequence from an arbitrary starting position:²

- (a) How many states does this problem have?
- (b) What is the approximate branching factor for this problem?
- (c) Develop an admissible heuristic function for this problem. Your heuristic should never overestimate the true solution cost. A good heuristic will have high values for states that are far from the solution, and low values for states that are near the solution.

 $^{^2}Artificial Intelligence: A Modern Approach, 3rd Edition. Stuart Russell and Peter Norvig, Prentice Hall, 2009$

3. Recall the office delivery robot problem from out textbook:

The authors provide the following heuristic function, based on straight line distances in the building:

h(mail) = 26	h(ts) = 23	h(o103) = 21
h(o109) = 24	h(o111) = 27	h(o119) = 11
h(o123) = 4	h(o125) = 6	h(r123) = 0
h(b1) = 13	h(b2) = 15	h(b3) = 17
h(b4) = 18	h(c1) = 6	h(c2) = 10
h(c3) = 12	h(storage) = 12	

Imagine we ran out of time in developing this heuristic function, and only had data for some of the rooms. We decide to use an estimate of 0 for all of the remaining rooms:

h(mail) = 26	h(ts) = 23	h(0103) = 21
h(0109) = 24	h(0111) = 27	h(o119) = 11
h(0123) = 4	h(o125) = 6	h(r123) = 0
h(b1) = 13	h(b2) = 0	h(b3) = 0
h(b4) = 0	h(c1) = 0	h(c2) = 0
h(c3) = 0	h(storage) = 0	

(a) Is this alternate heuristic admissible? Justify your answer.

(b) Is this alternate heuristic monotonic? Justify your answer.