Readings followed by (S) are supplemental. You should read them, but you won't be tested on that material.

Readings labeled "GIR" are from A Gentle Introduction to ROS. Jason M. O'Kane. 2014.

WEEK DATE TOPIC READING OUT DUE
1 01-13 Introduction (.pdf) / Syllabus
LAB 1 - Gazebo
About ROS
ROS Concepts (s)
HW1

01-15 LAB 2 - Wander Syllabus
GIR 2.1-2.2 (s)
GIR 2.3-2.7
ROS Tutorial 12

2 01-20 LAB 3 - Python Publishers and Subscribers ROS Tutorial 12 (Review)
HW #1 (1/23 5:00PM)

01-22
LAB 4 - Creating ROS Packages

ROS Tutorials 3 & 4
Mercurial Tutorial 1
Mercurial Tutorial 2
PA1
3 01-27 PID Controllers (.pdf)
pid.py
pid_demo.py
LAB 5
ROS Tutorials 7 & 8
Wikipedia: PID Controllers 1-3



01-29 Kinematics
transforms.py
Introduction to Homogeneous Transformations & Robot Kinematics
Linear Algebra Video (s)
HW2 (.pdf)
kinematics_hw.py
4 02-03 tf_demo.py
ROS Rotations
ROS Coordinate Frames
LAB 6 - Simple Navigation and tf
Intro. to Numpy and Scipy (.pdf)
(p 1-11, 16-17)
Video about tf
tf Overview page

PA1 (Monday 2/2, 11:59PM)
HW2 (Friday 2/6, 5:00PM)

02-05 Start Probability Video
Slides (.pdf)
Learning Occupancy Grid Maps with Forward Sensor Models
(SECTION 2 ONLY)
HW3
5 02-10 ASSESSMENT DAY


HW3 (Thursday, 11:00AM)

02-12 ROS Mapping and Navigation (.pdf)
LAB Turtlebot Mapping

PA2
6 02-17
Bayesian Filtering for Location Estimation (.pdf)
Fox et. al., 2003. p. 10-13



02-19 Recursive State Estimation (.pdf)
The Kalman Filter (.pdf)
kalman.py
kalman_demo.py
plot_gaussians.py
Kalman Filter Tutorial (1-14)
An Introduction to the Kalman Filter (s)
HW4 (.pdf)
7 02-24 Continue Kalman Filter

PA2 (2/26, 11:59PM)

02-26 Particle Filters Particle Filter Explained without Equations
Bayesian Filtering for Location Estimation (.pdf)
Fox et. al., 2003. p. 13-15

8 03-03 Control Architectures Gat, Erann. "On three-layer architectures." Artificial intelligence and mobile robots (1998): 195-210.
http://wiki.ros.org/smach

Final Project Proposal (3/3 11:00AM)
HW4 (3/3 11:00AM)

03-05 SNOW DAY

9 03-10 SPRING BREAK



03-12 SPRING BREAK

10 03-17 MIDTERM



03-19 Computer Vision Intro (.pdf)
plot_pixels.py
Python OpenCV Intro
OpenCV Basic Operations
OpenCV images
OpenCV Video
OpenCV Drawing (s)
Computer Vision: Algorithms and Applications
CH 1 (s)

11 03-24 Color Histograms
histogram.py
OpenCV Lab
OpenCV Color Histogram Tutorial
Indexing Via Color Histograms
(Swain and Ballard, 1990)

Checkpoint #1 (3/23, 11:00PM)

03-26 Object Detection
ROS Vision Lab
Computer Vision: Algorithms and Applications
CH 4-4.1.3

12 03-31 Configuration Spaces (.pdf) Computational Principles of Mobile Robotics
CH 6-6.3.2
Configuration Space Visualization
Annotated Bibliography Checkpoint #2 (4/2 11:00PM)

04-02 Discrete Path Planning (.pdf) Computational Principles of Mobile Robotics
CH 6.3.3
Thrun A* Videos 12-14, 20, 23

13 04-07 Rapidly-Exploring Random Trees Rapidly-exploring random trees: A new tool for path planning. S. M. LaValle, 1998
RRT Demos and information (s)
HW5 (.pdf) Annotated Bibliography (4/9 11:00PM)

04-09 SLAM
Computational Principles of Mobile Robotics
9.2.2-9.2.3

14 04-14 Control Architectures Computational Principles of Mobile Robotics
CH 7 - 7.5.0
Gat, Erann. "On three-layer architectures." Artificial intelligence and mobile robots (1998): 195-210.

Checkpoint #3 (4/16 11:00PM)

04-16 Paper Presentations and Final Project Work

15 04-21 Paper Presentations and Final Project Work

HW5 (4/21 11:00AM)
Checkpoint #4 (4/23 11:00PM)

04-23 Paper Presentations and Final Project Work

16 04-28 Review for Final



04-30 Final Project Presentations


05-05 Final 8:00-10:00