CS354

Nathan Sprague

March 31, 2015

- Two issues to consider today:
 - How to efficiently and conveniently encode a map of the robot's environment?

- How to parameterize the configuration of the robot?
- Both questions need to be addressed in order to plan.

Grid Based Maps

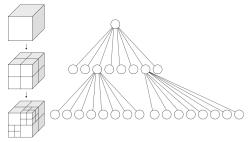
- Easy to work with, not space efficient
- Naive 2d grid representation of a 10m × 10m room at 1cm accuracy:

- $1000 \times 1000 = 1,000,000$ cells
- Quadtree is a more space efficient alternative...

Grid Based Maps

- Easy to work with, not space efficient
- Naive 2d grid representation of a 10m × 10m room at 1cm accuracy:
 - $1000 \times 1000 = 1,000,000$ cells
- Quadtree is a more space efficient alternative...

Octree is the 3d generalization



http://en.wikipedia.org/wiki/File:Octree2.svg, http://creativecommons.org/licenses/by-sa/3.0/

Topological Maps

Example

<□ > < @ > < E > < E > E のQ @

• "A configuration $\mathbf{q} \in C$ of the robot \mathcal{A} is a specification of the state of \mathcal{A} with respect to a fixed frame F_w " (Dudek and Jenkin)

Turtlebot configuration: $\mathbf{q} = [x, y, \Theta]$.

- "A configuration $\mathbf{q} \in C$ of the robot \mathcal{A} is a specification of the state of \mathcal{A} with respect to a fixed frame F_w " (Dudek and Jenkin)
- Turtlebot configuration: $\mathbf{q} = [x, y, \Theta]$.
- A **C-Obstacle** *CB_i* is defined as:
 - $\blacksquare \ \mathcal{C}B_i = \{\mathbf{q} \in \mathcal{C} \mid \mathcal{A}(\mathbf{q}) \cap \mathcal{B}_i \neq \emptyset\}$
 - **\square** \mathcal{B}_i is the space occupied by obstacle *i*.
 - $\mathcal{A}(\mathbf{q})$ is the space occupied by the robot in configuration \mathbf{q} .

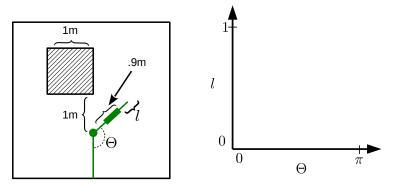
- "A configuration $\mathbf{q} \in C$ of the robot \mathcal{A} is a specification of the state of \mathcal{A} with respect to a fixed frame F_w " (Dudek and Jenkin)
- **Turtlebot configuration:** $\mathbf{q} = [x, y, \Theta]$.
- A C-Obstacle *CB_i* is defined as:
 - $\blacksquare \ \mathcal{C}B_i = \{\mathbf{q} \in \mathcal{C} \mid \mathcal{A}(\mathbf{q}) \cap \mathcal{B}_i \neq \emptyset\}$
 - **\square** \mathcal{B}_i is the space occupied by obstacle *i*.
 - $\mathcal{A}(\mathbf{q})$ is the space occupied by the robot in configuration \mathbf{q} .

•
$$C_{free} = \{ \mathbf{q} \in C \mid \mathcal{A}(\mathbf{q}) \cap (\cup_i \mathcal{B}_i) = \emptyset \}$$

• $C_{obs} = \overline{C_{free}}$

Exercise

Draw C_{free} for this robot:



Robot arm with a single rotational joint and a single prismatic joint

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- I prismatic joint extension in meters
- Θ angle of rotational joint ($\Theta \approx \pi/4$ in the image)

 "A free path in C-space is a continuous curve exclusively in *C*_{free} that connects two configurations **q**_{start} and **q**_{goal}."

- Paths may be
 - free: obstacles are not touched.
 - semi-free: obstacles may be touched.
- The goal of planning is to find a path.

- Holonomic vs. Non-holonomic constraints
 - Holonomic constraints restrict the allowed configurations.
 - Non-Holonomic constraints put limits on the paths between configurations.

- Point robot assumption and object dilation
 - Simplifies the problem of finding C_{free}