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Probabilistic State Representations: Continuous

Probabilistic Robotics. Thrun, Burgard, Fox,
2005



Probability Density Functions

Represent probability distributions over random variables:

Properties:

f (x) ≥ 0∫ ∞
−∞

f (x)dx = 1

Interpretation:

P(a ≤ x ≤ b) =

∫ b

a

f (x)dx



Expectation, Variance

Expectation (continuous)

µ = E[x ] =

∫
xf (x)dx

Expectation (discrete)

E[X ] =
n∑
1

P(xi )xi

Variance

σ2 = E[(x − E[x ])2]



Normal Distribution

f (x , µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2

(Normal because of the central limit theorem.)



Combining Evidence

Imagine two independent measurements of some unknown
quantity:

x1 with variance σ2
1

x2 with variance σ2
2

How should we combine these measumrents?

We can take a weighted average:

x̂ = ω1x1 + ω2x2 (where ω1 + ω2 = 1)

What should the weights be???

We want to find weights that minimize variance (uncertainty)
in the estimate:

σ2 = E [(x̂ − E [x̂ ])2]
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Combining Evidence – Solution

(Derivation not shown...)

x̂ =
σ22x1 + σ21x2
σ22 + σ21

σ2 =
σ21σ

2
2

σ22 + σ21



Vector-Valued State

We’ll need to generalize all of this to the case where the state
of the system can’t be represented as a single number.

Use a vector x to represent the state.



Covariance

cov(x , y) = E[(x − µx)(y − µy )]

Properties:

cov(x , y) = cov(y , x)
If x and y are independent, cov(x , y) = 0
If cov(x , y) > 0, y tends to increase when x increases.
If cov(x , y) < 0, y tends to decrease when x increases.



Covariance Matrix

Covariance matrix:

cov(x) = Σx = E[(x− x̂)(x− x̂)T ]

Where x is a random vector and x̂ is the vector mean.

The entry at row i, column j in the matrix is cov(xi ,xj)

Multivariate normal distribution is parameterized by the mean
vector and covariance matrix.



Multivariate PDF Example

x =

[
3
3

]
, Σ =

[
1 0
0 1

]



Multivariate PDF Example

x =

[
3
3

]
, Σ =

[
1 0
0 1

]



Multivariate PDF Example

x =

[
3
3

]
, Σ =

[
.2 0
0 1

]



Multivariate PDF Example

x =

[
3
3

]
, Σ =

[
.2 0
0 1

]



Multivariate PDF Example

x =

[
3
3

]
, Σ =

[
1 .9
.9 1

]



Multivariate PDF Example

x =

[
3
3

]
, Σ =

[
1 .9
.9 1

]



Multivariate PDF Example

x =

[
3
3

]
, Σ =

[
.5 −.3
−.3 2

]



Multivariate PDF Example

x =

[
3
3

]
, Σ =

[
.5 −.3
−.3 2

]



Linear System Models

State can include information other than position. E.g.
velocity.

Linear model of an object moving with a fixed velocity in 2d:

xt+1 = xt + ẋtdt
yt+1 = yt + ẏtdt
ẋt+1 = ẋt
ẏt+1 = ẏt

dt is time.

ẋt is velocity along the x axis.



Linear System Model in Matrix Form

This is equivalent to the last slide:

xt =


xt
yt
ẋt
ẏt



xt+1 =


1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

 xt



Kalman Filter

Assumes:

Linear state dynamics
Linear sensor model
Normally distributed noise in the state dynamics
Normally distributed noise in the sensor model

State Transition Model:

xt = Axt−1 + But−1 + wt−1

Sensor Model:

zt = Hxt + vt



Kalman Filter in One Slide

Predict:
Project the state forward:

x̂−t = Ax̂t−1 + But−1

Project the covariance of the state estimate forward:

P−
t = APt−1A

T + Q

Correct:
Compute the Kalman gain:

Kt = P−
t H

T (HP−
t H

T + R)−1

Update the estimate with the measurement:

x̂t = x̂−t + Kt(zt − H x̂−t )

Update the estimate covariance:

Pt = (I−KtH)P−
t


