The schedule below represents my current best estimate concerning due dates (and everything else). I am providing this information to give you a general idea of the pace and timing of the class. This schedule will certainly change as the semester progresses.

Unless otherwise noted, all readings are from

Readings followed by (S) are supplemental. You may find them helpful.

WEEK DATE TOPIC READING/VIDEOS OUT IN
1 08-22 Introduction to ML CH 1 Python Setup
PA0

2 08-27 Decision Tree Activity (.pdf)
CH 2-2.1
CH 3-3.3

PA0 Part 1
Python Setup
08-29 Numpy Lab
tree_warmup.ipynb (.html)
decision_tree.py
https://scipy-lectures.org/
(1.3.1-1.3.2)
Fast Numpy Video

PA0 Part 2
(Before class!)
3 09-03 Expectation
Bias/Variance Trade-off
App. C1-C1.1
Bias/Variance
PA1 PA0 Parts 3,4
09-05 Bias Variance Quiz (.pdf)
Testing And Validation
CH 3.4-3.8

4 09-10 Curse of Dimensionality CH 2.2-2.4.5
CH 4.1, 4.3


09-12 Class Imbalance
KNN activity
CH 4.11

5 09-17 Probability Intro
Probability Activity
CH 4.4-4.4.2 HW1 PA1
09-19 Naive Bayes CH 4.4.2 PA2
6 09-24 Bagging
boosting_exercises.pdf
CH 4.10-4.10.5

09-26 Random Forest
random_forest_quiz.pdf
CH 4.10.6
HW1
7 10-01 EXAM 1


10-03 linear_algebra_exercises.pdf

Gradient Descent
linear_regression.pdf
linear_regression.py
Linear Algebra Review (S)
Section 1-3.7 (skip 3.6)
Video (S)
More Videos (S)
Calculus Refresher (S) 9-14

Neural Net Video 1/2
Neural Net Video 2/2
deeplearningbook.org
Section 4.3.0


8 10-08 Logistic Regression
CH 4.6

10-10 MLP
CH 4.7
PyTorch Tensors
PyTorch Autograd

PA2
9 10-15 pytorch_intro.zip
PyTorch Tutorial

10-17 FALL BREAK


10 10-22 CIFAR 10 Lab
Remote Access
Regularization etc.
CH 4.8
deeplearningbook.org
7 - 7.1.2, 7.4
7.12 (s)
8.2.2 - 8.2.4, 8.3.2
Poster Project
10-24 Autodiff (.pdf)
autodiff_exercise.pdf
Autodiff
Autodiff Video PA3
11 10-29 Convnets (.pdf)
convnet_exercise.pdf
https://setosa.io/ev/image-kernels/
CNN Intro 1/3
CNN Intro 2/3
CNN Intro 3/3 (s)

Poster Proposal
10-31
RNN
rnn_exercises.ipynb
MLP Review
Word Embedding Tutorial
"Unreasonable Effectiveness"
deeplearningbook.org
10-10.2.0 (s)


12 11-05 LSTM LSTM Tutorial
Transformer Tutorial


11-07 EXAM 2


13 11-12 Transformers ThreeBlueOneBrown 5
ThreeBlueOneBrown 6
ThreeBlueOneBrown 7

Poster Bibliography
11-14 SVM
CH 4.9

14 11-19 PCA
pca.ipynb
pca2.ipynb
Covariance Tutorial
Video
Appendix B.1.1

PA3
11-21 Nonlinear Dimensionality
Reduction
t-SNE Paper
nonlinear_dr.zip
PDSH: Manifold Learning
Poster Draft
15 11-26 THANKSGIVING


11-28 THANKSGIVING


16 12-03

Clustering
CH 7-7.2.2
CH 7.3-7.4
CH 7.5 (skim)
CH 8.1

CH 9-9.3.1, 9.4
Skim 9.5-end


12-05 Final Review