Readings followed by (S) are supplemental. You should read them, but you won't be tested on that material.

Readings labeled "GIR" are from A Gentle Introduction to ROS. Jason M. O'Kane. 2014.

WEEK DATE TOPIC READING OUT DUE
1 09-01 Introduction / Syllabus
LAB - Teleoperation
GIR 1.1
About ROS
PA0

09-03 ROS Command Line (.pdf)
LAB - ROS Command Line
Syllabus
GIR 2.3-2.7
ROS Core Components
GIR 2.1-2.2 (s)

2 09-08 rocket_bot.py
thruster_w_globals.py
thruster_oo.py
thruster_oo_responder.py
LAB - Python Publishers and Subscribers
ROS Tutorial 12
PA0 (9/11 5:00PM)

09-10 LAB - ROS Packages ROS Tutorials 3 & 4
Mercurial Tutorial 1
Mercurial Tutorial 2
PA1
3 09-15 Coordinate Systems Introduction to Homogeneous Transformations & Robot Kinematics
Linear Algebra Video (s)
HW1.pdf
transforms.py
kinematics_hw.py


09-17 Numpy
Representing Rotations
The tf system
Intro. to Numpy and Scipy (.pdf)
(p 1-11, 16-17)
Video about tf
tf Overview page
Quaternion Video

4 09-22 LAB - tf

HW1 (Wednesday 9/23, 11:59PM)
PA1 (Friday 9/25, 5:00PM)

09-24 Probability (.pdf)
Bayes' Activity
Video 1 - Set Theory
Video 2 - Bayes' Rule
Computational Principles of Mobile Robotics, Appendix A

5 09-29 Localization (.pdf)
Covariance Matrices +Multivariate Gaussian Distribution (.pdf)
Bayesian Filtering for Location Estimation (.pdf)
Fox et. al., 2003. p. 10-13
Multivariate Statistics Tutorial
6.5.1, 6.5.4-6.4.2
HW2 (.pdf)

10-01 Kalman Filter (.pdf)
kalman.py
plot_gaussians.py
kalman_demo.py
Kalman Filter Tutorial (1-14)
An Introduction to the Kalman Filter (s)

6 10-06
Localization - Particle Filter (.pdf)
particle_demo.py
ROS Navigation Lab
Particle Filter Explained without Equations
Bayesian Filtering for Location Estimation (.pdf)
Fox et. al., 2003. p. 13-15


HW2 (Thursday, 11:00AM)

10-08 Midterm Review
PA2
7 10-13 MIDTERM



10-15 SLAM (.pdf) Computational Principles of Mobile Robotics
9.2.2-9.2.3

8 10-20 ROS Navigation (.pdf)
ROS Navigation Lab
actionlib documentation 1-5, 6.2
PA2 (Friday 5:00PM)

10-22 Configuration Spaces (.pdf) Computational Principles of Mobile Robotics
CH 6 - 6.3.2
Configuration Space Visualization
Bibliography
9 10-27 Discrete Path Planning Computational Principles of Mobile Robotics
CH 6.3.3
Final Project

10-29 Continue Path Planning

10 11-03 Randomly Exploring Random Trees (.pdf) Rapidly-exploring random trees: A new tool for path planning. S. M. LaValle, 1998
RRT Demos and information (s)
HW3 (.pdf)
HW3 (Friday 5:00PM)

11-05 Computer Vision (.pdf)
convolutions.py
OpenCV Lab
Python OpenCV IntroOpenCV Basic OperationsOpenCV images OpenCV VideoOpenCV Drawing (s)Computer Vision: Algorithms and ApplicationsCH 1 (s)
11 11-10 Computer Vision
ROS Vision Lab
Computer Vision: Algorithms and Applications
CH 4-4.1.3

Checkpoint #1 (Monday 11:00PM)
Bibliography (Thursday 11:00PM)

11-12 Object Recognition (.pdf) Deep Learning (Accessible from JMU network)
12 11-17 Control Architectures Computational Principles of Mobile Robotics
CH 7 - 7.5.0

Checkpoint #2 (Friday 5:00PM)

11-19 Paper Presentations and Final Project Work

13 11-24 THANKSGIVING



11-26 THANKSGIVING

14 12-01 Paper Presentations and Final Project Work

Checkpoint #3 (Friday 5:00PM)

12-03 Paper Presentations and Final Project Work

15 12-08 Final Project Presentations (2:00-4:00)



12-10 Paper Presentations and Final Project Work


12-15 Final 1:00-3:00