Representing Maps: Topological

- Represent relative locations using a graph structure.
 + Good for high level navigation
 - Difficult to build autonomously
 - Not good for low-level localization and navigation
Representing Maps: Geometric Landmark Based

• Store the geometric location of recognizable landmarks.
 – Maybe artificial beacons or markers.
 – Maybe distinctive environmental features.

+ Memory-efficient
+ Allows precise localization
 - Landmark mis-identification can cause problems
 - May not be ideal for identification: only landmark positions are stored, not necessarily the positions of all obstacles
Representing Maps:
Occupancy Grid

- Divide the environment into grid cells, maintain an “occupied” probability for each cell.
 - Memory intensive (particularly in 3D)
 - Good for navigation
 - Good for localization
 - Relatively simple to create autonomously
Mapping w/ Occupancy Grids

- Relatively easy if we know the robot pose:

Increase occupied probability

Decrease occupied probability
• Recall the localization problem:

\[P(x_t | z_{0:t}, u_{0:t}) \]

• The SLAM problem is reassuringly familiar:

\[P(x_t, \Theta | z_{0:t}, u_{0:t}) \]

• Where \(\Theta \) represents the map.

• Before we wanted a probability distribution over all possible robot poses.

• Now we want a joint probability distribution over all possible robot poses and all possible maps.

 “Distribution over possible maps” is not as manageable as “distribution over poses”
SLAM “Solution”

• Prediction:

\[Bel^-(x_t, \Theta) = \int P(x_t | x_{t-1}, u_t) Bel(x_{t-1}, \Theta) dx_{t-1} \]

• Correction:

\[Bel(x_t, \Theta) = \eta P(z_k | x_t, \Theta) Bel^-(x_t, \Theta) \]

• The tricky bit is correction: updating the distribution over pose and map estimates given sensor data

Adapted from Simultaneous Localisation and Mapping (SLAM): Part 1 The Essential Algorithms, Hugh Durrant-Whyte, 2006
(Extended) Kalman Filter

SLAM

• Most appropriate for landmark-based map.
• Let's look at the example from the textbook.
• Problems:
 - Not clear how to use this for occupancy grids
 - The covariance matrix gets really big as the number of landmarks grows
Particle Filter SLAM: Problems

• Covering the space of possible poses and maps with particles is not practical:
 – “Pose particle”: 3-6 dimensions
 – “Map particle” for a (tiny) 10x10 grid: 100 dimensions
 – Joint map x pose particle: 300-600 dimensions
Rao-Blackwellized Particle Filter

- Solution/Approximation:
 - Each pose particle has an associated map.
 - Each map is updated under the assumption that its particle represents the correct pose.
 - The map may be landmark-based or occupancy grid-based.

- The ROS gmapping package uses this approach