CS354

Nathan Sprague

October 6, 2015

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Monte-Carlo Localization aka Particle Filter

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Figure 8.11 Monte Carlo Localization, a particle filter applied to mobile robot localization.

Particle Filter Algorithm

1:	procedure PARTICLE_FILTER(X_{t-1}, u_t, z_t)
2:	Inputs
3:	\mathcal{X}_{t-1} – The previous set of particles
4:	u_t – The control signal
5:	z_t – The sensor value
6:	Output
7:	\mathcal{X}_t – The updated set of particles
о.	$\bar{\mathcal{V}}$ \mathcal{V} ϕ
0:	$\lambda_t = \lambda_t = \psi$
9:	$M = \mathcal{X}_{t-1} $
10:	for $m = 0$ to $M - 1$ do
11:	$x_t^{[m]} = sample_motion_model(u_t, x_t^{[m]})$
12:	$w_t^{[m]} = measurement_model(z_t, x_t^{[m]})$
13:	$ar{\mathcal{X}}_t = ar{\mathcal{X}}_t \cup \langle x_t^{[m]}, w_t^{[m]} angle$
14:	for $m = 0$ to $M - 1$ do
15:	draw i with probability $\propto w_t^{[i]}$
16:	$\mathcal{X}_t = \mathcal{X}_t \cup \langle x_t^{[i]}, 1/M angle$

▷ Resampling

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Based on Algorithm in Table 4.3 in Probabilistic Robotics. Thrun, Burgard, Fox, 2005

Grid Example

<□ > < @ > < E > < E > E のQ @

Sampling From the Motion Model

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Measurement Models for Laser Range Finders

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?