The schedule below represents my current best estimate concerning due dates (and everything else). I am providing this information to give you a general idea of the pace and timing of the class. This schedule will certainly change as the semester progresses.

Unless otherwise noted, all readings are from

Readings followed by (S) are supplemental. You may find them helpful.

WEEK DATE TOPIC READING/VIDEOS OUT IN
1 01-19 Introduction to ML
Intro Decision Trees
CH 1 PA0
Python Setup

01-21 Types of Data
Decision Tree Activity (.pdf)
CH 2-2.1
CH 3-3.3


2 01-26 Numpy Lab https://scipy-lectures.org/
(1.4.1-1.4.4)
Fast Numpy Video

PA0 A
(Before class!)
01-28 decision_tree.py
tree_warmup.ipynb



3 02-02 Bias/Variance Trade-off App. C1-C1.1
Bias/Variance (1-2)
PA1 PA0 B (11:00PM)
02-04 Testing And Validation CH 3.4-3.8

4 02-09 ASSESSMENT DAY


02-11 Curse of Dimensionality
KNN
CH 2.2-2.4.5
CH 4.1, 4.3


5 02-16 Class Imbalance +
ROC Curves
CH 4.4-4.4.1
CH 4.11


02-18 EXAM 1 Review


6 02-23 Probability Review
Naive Bayes
CH 4.4.2 NB HW PA1
02-25 Bagging
boosting_exercises.pdf
CH 4.10-4.10.5 PA2 NB HW
7 03-02 Random Forest
Boosting
random_forest_quiz.pdf
CH 4.10.6

03-04 Linear Algebra Review (.pdf) Linear Algebra Review
Section 1-3.7 (skip 3.6)
Video
More Videos (S)


8 03-09 Gradient Descent deeplearningbook.org
Section 4.3.0
Videos
Calculus Refresher (S) 9-14
Poster Project
03-11 Logistic Regression
exercises
CH 4.6

9 03-16 MLP
Tensorflow Lab (.ipynb)
CH 4.7
PA2
03-18 Keras
CIFAR 10 Lab
Keras Intro Tutorial
Keras Validation
Keras Save/Load


10 03-23 Regularization Etc.
Neural Net Questions (.pdf)
CH 4.8
deeplearningbook.org
7 - 7.1.2, 7.4
7.12 (s)
8.2.2 - 8.2.4, 8.3.2

Poster Proposal
03-25 Autodiff (.pdf) Autodiff Video

11 03-30 Convnets (.pdf)
convnet_exercise.pdf
https://setosa.io/ev/image-kernels/
CNN Intro 1/3
CNN Intro 2/3
CNN Intro 3/3 (s)
PA3
04-01 Word Embeddings
Start RNN
rnn_exercises.ipynb
Word Embedding Tutorial
"Unreasonable Effectiveness"
Tensorflow implementation (s)
deeplearningbook.org
10-10.2.0 (s)


12 04-06 Transformers LSTM Tutorial
Attention Survey (Through Section 3)

Poster Bibliography
04-08 BREAK DAY


13 04-13 SVM CH 4.9
PA3
04-15 PCA Lab
pca.ipynb
pca2.ipynb
Covariance Tutorial
Video
Appendix B.1.1


14 04-20 Nonlinear Dimensionality Reduction
nonlinear.pdf
PDSH: Manifold Learning

04-22 Clustering
cluster_hw.pdf
CH 7-7.2.2
CH 7.3-7.4
CH 7.5 (skim)
CH 8.1


15 04-27 Outlier Detection
mystery.npy
CH 9-9.3.1, 9.4
Skim 9.5-end


04-29 Final Review

Poster Submission
16 05-04 Final Exam 10:30-12:30AM