The schedule below represents my current best estimate concerning due dates (and everything else). I am providing this information to give you a general idea of the pace and timing of the class. This schedule will certainly change as the semester progresses.
Unless otherwise noted, all readings are from
WEEK | DATE | TOPIC | READING/VIDEOS | OUT | IN |
1 | 01-19 | Introduction to ML Intro Decision Trees |
CH 1 | PA0 Python Setup |
|
01-21 | Types of Data Decision Tree Activity (.pdf) |
CH 2-2.1 CH 3-3.3 |
|||
2 | 01-26 | Numpy Lab | https://scipy-lectures.org/ (1.4.1-1.4.4) Fast Numpy Video |
PA0 A (Before class!) |
|
01-28 | decision_tree.py tree_warmup.ipynb |
||||
3 | 02-02 | Bias/Variance Trade-off | App. C1-C1.1 Bias/Variance (1-2) |
PA1 | PA0 B (11:00PM) |
02-04 | Testing And Validation | CH 3.4-3.8 | |||
4 | 02-09 | ASSESSMENT DAY | |||
02-11 | Curse of Dimensionality KNN |
CH 2.2-2.4.5 CH 4.1, 4.3 |
|||
5 | 02-16 | Class Imbalance + ROC Curves |
CH 4.4-4.4.1 CH 4.11 |
||
02-18 | EXAM 1 Review | ||||
6 | 02-23 | Probability Review Naive Bayes |
CH 4.4.2 | NB HW | PA1 |
02-25 | Bagging boosting_exercises.pdf |
CH 4.10-4.10.5 | PA2 | NB HW | |
7 | 03-02 | Random Forest Boosting random_forest_quiz.pdf |
CH 4.10.6 | ||
03-04 | Linear Algebra Review (.pdf) | Linear Algebra Review Section 1-3.7 (skip 3.6) Video More Videos (S) |
|||
8 | 03-09 | Gradient Descent | deeplearningbook.org Section 4.3.0 Videos Calculus Refresher (S) 9-14 |
Poster Project | |
03-11 | Logistic Regression exercises |
CH 4.6 | |||
9 | 03-16 | MLP Tensorflow Lab (.ipynb) |
CH 4.7 | PA2 | |
03-18 | Keras CIFAR 10 Lab |
Keras Intro Tutorial Keras Validation Keras Save/Load |
|||
10 | 03-23 | Regularization Etc. Neural Net Questions (.pdf) |
CH 4.8 deeplearningbook.org 7 - 7.1.2, 7.4 7.12 (s) 8.2.2 - 8.2.4, 8.3.2 |
Poster Proposal | |
03-25 | Autodiff (.pdf) | Autodiff Video | |||
11 | 03-30 | Convnets (.pdf) convnet_exercise.pdf |
https://setosa.io/ev/image-kernels/ CNN Intro 1/3 CNN Intro 2/3 CNN Intro 3/3 (s) |
PA3 | |
04-01 | Word Embeddings Start RNN rnn_exercises.ipynb |
Word Embedding Tutorial "Unreasonable Effectiveness" Tensorflow implementation (s) deeplearningbook.org 10-10.2.0 (s) |
|||
12 | 04-06 | Transformers | LSTM Tutorial Attention Survey (Through Section 3) |
Poster Bibliography | |
04-08 | BREAK DAY | ||||
13 | 04-13 | SVM | CH 4.9 | PA3 | |
04-15 | PCA Lab pca.ipynb pca2.ipynb |
Covariance Tutorial Video Appendix B.1.1 |
|||
14 | 04-20 | Nonlinear Dimensionality Reduction nonlinear.pdf |
PDSH: Manifold Learning | ||
04-22 | Clustering cluster_hw.pdf |
CH 7-7.2.2 CH 7.3-7.4 CH 7.5 (skim) CH 8.1 |
|||
15 | 04-27 | Outlier Detection mystery.npy |
CH 9-9.3.1, 9.4 Skim 9.5-end |
||
04-29 | Final Review | Poster Submission | |||
16 | 05-04 | Final Exam 10:30-12:30AM |