Multi-Layer Neural Networks
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4x1
column X <

vector

Hidden activation: h(x'W M)
Output activation: o (h(xTW(l))W(Q))

(h is the non-linearity at the hidden layer. O is the non-linearity at the

output. Applied element-wise.)



3x1
column X <

vector

Hidden activation: h(x'W M)
Output activation: o (h(xTW(l))W(Q))

(h is the non-linearity at the hidden layer. O is the non-linearity at the

output. Applied element-wise.)



Activation at the output layer:
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Here O is the activation function at the output layer. Units at the
input layer are indexed with J, hidden with j and output with k.

Error metric, assuming multiple output units:
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Forward Pass: Activation sy

* Backward Pass:




Calculating partial derivatives is tedious, but mechanical

Modern neural network libraries perform automatic differentiation
~ Tensorflow

~ PyTorch

~ Etc.

The programmer just needs to specify the network structure and
the loss function — No need to explicitly write code for
performing weight updates

The computational cost for the backward pass is not much more
than the cost for the forward pass



* How best to add capacity?

~ More units in a single hidden layer?

* Three layer networks are universal approximators: with
enough units any continuous function can be approximated

* Adding layers makes the learning problem harder...



Error Signal




There are tasks that require exponentially many
hidden units for a three-layer architecture, but
only polynomially many with more hidden layers

The best hand-coded image processing algorithms
have deep structure

The brain has a deep architecture

* MORE SOON.
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