Multi-Layer Neural Networks

Neuron Non-linearity

w

w2

[

w3

/]

N

0.0
—6—4-20 2 4

)

72/%////

Network

D A A OO A OO A OO A A O O —

Lttt O O
< ISR N NE AN EA NN N NN A

Training Data

4x1
column X <

vector

Hidden activation: h(x'W M)
Output activation: o (h(xTW(l))W(Q))

(h is the non-linearity at the hidden layer. O is the non-linearity at the

output. Applied element-wise.)

3x1
column X <

vector

Hidden activation: h(x'W M)
Output activation: o (h(xTW(l))W(Q))

(h is the non-linearity at the hidden layer. O is the non-linearity at the

output. Applied element-wise.)

Activation at the output layer:

ar = O Zwﬁz h (Z w,flj)a:z>
j i

Here O is the activation function at the output layer. Units at the
input layer are indexed with J, hidden with j and output with k.

Error metric, assuming multiple output units:

E"”O’”:%Z()’k_ak)z
k

* Now just compute OError and @EI’I(”O)I”
2) ¥
ow; ow

k i\J

o .
Forward Pass: Activation sy

* Backward Pass:

Calculating partial derivatives is tedious, but mechanical

Modern neural network libraries perform automatic differentiation
~ Tensorflow

~ PyTorch

~ Etc.

The programmer just needs to specify the network structure and
the loss function — No need to explicitly write code for
performing weight updates

The computational cost for the backward pass is not much more
than the cost for the forward pass

* How best to add capacity?

~ More units in a single hidden layer?

* Three layer networks are universal approximators: with
enough units any continuous function can be approximated

* Adding layers makes the learning problem harder...

Error Signal

There are tasks that require exponentially many
hidden units for a three-layer architecture, but
only polynomially many with more hidden layers

The best hand-coded image processing algorithms
have deep structure

The brain has a deep architecture

* MORE SOON.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

