Neural Network Quiz

1. Counting Weights

Consider a fully-connected neural network with the following configuration:

Layer 1 (Input): 100 units
Layer 2 (Hidden): 10 units
Layer 3 (Hidden): 10 units
Layer 4 (Output): 4 units

How many overall weights does this network have, including bias weights?

2. Classifier Capabilities

Consider the following four datasets:

Fill in the following table indicating whether The indicated classifiers are capable of learning a model that will achieve 100% accuracy when trained on the datasets above. (Assume that the KNN classifiers are tested using leave-one-out cross validation.)

	A	В	С	D
Logistic Regression				
Broken Logistic Regression*				
Three-Layer Neural Network				
Decision Tree (max depth $= \infty$)				
Decision Tree (max depth $= 4$)				
Decision Tree (max depth $= 1$)				
1-Nearest Neighbor				
3-Nearest Neighbors				

^{*}A logistic regression classifier with a broken bias weight stuck at 0.

3. Mini-Batches

What is a mini-batch? What is the benefit of using mini-batches in neural network training?

4. Regularization

(a) The following formula describes a neural network loss function with L2 regularization: \mathbf{w} represents the full set of weights, L represents the unregularized loss function and $\|\mathbf{w}\|_2^2$ represents the squared L2 norm (the subscript indicates that this is an L"2" norm, the superscript represents that fact that we are squaring the result.)

$$L_{\lambda}(\mathbf{w}) = L(\mathbf{w}) + \lambda \|\mathbf{w}\|_{2}^{2}$$

- What will be the result of training a network with a very high value for λ ?
- What will be the result of training a network with $\lambda = 0$?
- How would we go about selecting an appropriate value for λ ?
- (b) Dropout is sometimes explained in the context of bagging. Briefly explain the relationship between the two.