The schedule below represents my current best estimate concerning due dates (and everything else). I am providing this information to give you a general idea of the pace and timing of the class. This schedule will certainly change as the semester progresses.

Unless otherwise noted, all readings are from

Readings followed by (S) are supplemental. You should read them, but you won't be tested on that material.

WEEK DATE TOPIC READING OUT IN
1. Uninformed Search 08-26 Introduction/Syllabus CH 1 HW1
08-28 Uninformed Search (.pdf)
Search Activity (.pdf)
videos
CH 3-3.5.2, 3.7.1-3.7.2

Reading Quiz
Canvas Background Survey
08-30 Minimum Cost Search (.pdf)
Exercise (.pdf)
Complexity Theory
CH 3.5.3
videos
http://en.wikipedia.org/wiki/NP-complete
Python Basics Tutorial
HW2
2. Informed Search 09-02 Discuss Turing Paper Computing Machinery and Intelligence PA1 HW1
09-04 Informed Search
A* Activity (.pdf)
videos
CH 3.6


09-06 Wrap-Up Search CH 3.7.3, 3.7.5
CH 3.7.6: Optimality of A*

HW2
3. Adversarial Search 09-09 CSP's
CSP Activity
CH 4-4.5
Skim CH 4.6-4.7


09-11 Minimax Algorithm (.pdf)
Minimax Exercises (.pdf)
CH 10.2-10.2.2,10.3

09-13 Expectimax + Evaluation Functions
MIT AI:6.034 Games and Utility Handout
(Exercises 1 and 3)
CH 6.1.4 (s) Poster Project
4. Propositional Logic 09-16 Propositional Logic
Propositional Logic Exercises (.pdf)
CH 5-5.2.2
PA1A
09-18 Propositional Resolution
resolution exercises (.pdf)
Automatic Theorem Proving

09-20 Exam Review


5. Predicate Logic 09-23 EXAM 1


09-25 First Order Logic + Datalog
Predicate Logic Exercises (.pdf)
Predicate Logic Review (section 4) (s)
CH 12-12.3


09-27 Continue First Order Logic
PA2 PA1B
6. Machine Learning 09-30 First Order Theorem Proving
Proof Exercises (.pdf)
CH 12.4
Resolution Tutorial
Proof HW (2-4)
10-02 Linear Algebra
Linear Algebra Exercises (.pdf)
Linear Algebra Review and Reference (.pdf)
sections 1-3.7, (skip 3.6)


10-04 Numpy
Numpy Exercises (.pdf)
numpy_exercises.py
Numpy Tutorial
Proof HW
7. Neural Networks 10-07 Gradient Descent +
Linear Regression (.pdf)
Linear Regression Exercise (.pdf)
CH 4.10.2, 7-7.2.1, 7.3.2
Calculus Refresher (.pdf) (9-13) (s)


10-09 Neural Networks (.pdf) CH 7.4.1

10-11 single_layer_nn.py
usps.npy
CH 7.5-7.6 (skip 7.5.1)

8. Misc. Learning 10-14 Support Vector Machines What is a Support Vector Machine?
Hype or Hallelujah (s)


10-16 K-Nearest-Neighbors (.pdf) CH 7.6
PA2
10-18 Start PA3 Kaggle Exercise
makeSubmission.py
PA3 Poster Proposal
9. Probabilistic AI 10-21 Probability + Bayes Rule (.pdf)
probability exercises (.pdf)
CH 6.1-6.2

10-23 Belief Nets + Naive Bayes (.pdf) CH 6.3

10-25 Bayes classifier exercises (.pdf)


10. Markov Models 10-28 Review Session


10-30 EXAM 2


11-01 Markov Models
Markov Model Exercises (.pdf)
CH 6.5-6.5.2

11. Reinforcement
Learning
11-04 Hidden Markov Models and
Dynamic Belief Networks
Berkeley CS188 Lecture Slides (.pdf)
HMM Exercises (.pdf)
CH 6.5.3-6.6
CH 6.4.2


11-06 Markov Decision Processes
Berkely CS188 Lecture Slides (.pdf)
Value Iteration Demo
MDP Exercises (.pdf)
CH 9.5-9.5.2
PA3
11-08 Continue MDP's


12. Genetic Algorithms 11-11 Q-Learning
Q-Learning Demo
Q-Learning Exercises (.pdf)
CH 11.3-11.3.3 PA4 Poster Bibliography
11-13 Work Day


11-15 Local Search andGenetic Algorithms (.pdf)
GA Demo
CH 4.8-4.9

13. Ethical Issues 11-18 Approximate RL
Approximate RL Exercises (.pdf)



11-20 Ethics and AI


11-22 Review Session


14. Thanksgiving 11-25 THANSKGIVING


11-27 THANSKGIVING


11-29 THANSKGIVING


15. Poster Session
and Review
12-02 Poster Session


12-04 Poster Session


12-06


PA4