The schedule below represents my current best estimate concerning due dates (and everything else). I am providing this information to give you a general idea of the pace and timing of the class. This schedule will certainly change as the semester progresses.
Unless otherwise noted, all readings are from
WEEK | DATE | TOPIC | READING | OUT | IN |
1. Uninformed Search | 08-26 | Introduction/Syllabus | CH 1 | HW1 | |
08-28 | Uninformed Search (.pdf) Search Activity (.pdf) |
videos CH 3-3.5.2, 3.7.1-3.7.2 |
Reading Quiz Canvas Background Survey |
||
08-30 | Minimum Cost Search (.pdf) Exercise (.pdf) Complexity Theory |
CH 3.5.3 videos http://en.wikipedia.org/wiki/NP-complete Python Basics Tutorial |
HW2 | ||
2. Informed Search | 09-02 | Discuss Turing Paper | Computing Machinery and Intelligence | PA1 | HW1 |
09-04 | Informed Search A* Activity (.pdf) |
videos CH 3.6 |
|||
09-06 | Wrap-Up Search | CH 3.7.3, 3.7.5 CH 3.7.6: Optimality of A* |
HW2 | ||
3. Adversarial Search | 09-09 | CSP's CSP Activity |
CH 4-4.5 Skim CH 4.6-4.7 |
||
09-11 | Minimax Algorithm (.pdf) Minimax Exercises (.pdf) |
CH 10.2-10.2.2,10.3 | |||
09-13 | Expectimax + Evaluation Functions MIT AI:6.034 Games and Utility Handout (Exercises 1 and 3) |
CH 6.1.4 (s) | Poster Project | ||
4. Propositional Logic | 09-16 | Propositional Logic Propositional Logic Exercises (.pdf) |
CH 5-5.2.2 | PA1A | |
09-18 | Propositional Resolution resolution exercises (.pdf) |
Automatic Theorem Proving | |||
09-20 | Exam Review | ||||
5. Predicate Logic | 09-23 | EXAM 1 | |||
09-25 | First Order Logic + Datalog Predicate Logic Exercises (.pdf) |
Predicate Logic Review (section 4) (s) CH 12-12.3 |
|||
09-27 | Continue First Order Logic | PA2 | PA1B | ||
6. Machine Learning | 09-30 | First Order Theorem Proving Proof Exercises (.pdf) |
CH 12.4 Resolution Tutorial |
Proof HW (2-4) | |
10-02 | Linear Algebra Linear Algebra Exercises (.pdf) |
Linear Algebra Review and Reference (.pdf) sections 1-3.7, (skip 3.6) |
|||
10-04 | Numpy Numpy Exercises (.pdf) numpy_exercises.py |
Numpy Tutorial | Proof HW | ||
7. Neural Networks | 10-07 | Gradient Descent + Linear Regression (.pdf) Linear Regression Exercise (.pdf) |
CH 4.10.2, 7-7.2.1, 7.3.2 Calculus Refresher (.pdf) (9-13) (s) |
||
10-09 | Neural Networks (.pdf) | CH 7.4.1 | |||
10-11 | single_layer_nn.py usps.npy |
CH 7.5-7.6 (skip 7.5.1) | |||
8. Misc. Learning | 10-14 | Support Vector Machines | What is a Support Vector Machine? Hype or Hallelujah (s) |
||
10-16 | K-Nearest-Neighbors (.pdf) | CH 7.6 | PA2 | ||
10-18 | Start PA3 | Kaggle Exercise makeSubmission.py |
PA3 | Poster Proposal | |
9. Probabilistic AI | 10-21 | Probability + Bayes Rule (.pdf) probability exercises (.pdf) |
CH 6.1-6.2 | ||
10-23 | Belief Nets + Naive Bayes (.pdf) | CH 6.3 | |||
10-25 | Bayes classifier exercises (.pdf) | ||||
10. Markov Models | 10-28 | Review Session | |||
10-30 | EXAM 2 | ||||
11-01 | Markov Models Markov Model Exercises (.pdf) |
CH 6.5-6.5.2 | |||
11. Reinforcement Learning |
11-04 | Hidden Markov Models and Dynamic Belief Networks Berkeley CS188 Lecture Slides (.pdf) HMM Exercises (.pdf) |
CH 6.5.3-6.6 CH 6.4.2 |
||
11-06 | Markov Decision Processes Berkely CS188 Lecture Slides (.pdf) Value Iteration Demo MDP Exercises (.pdf) |
CH 9.5-9.5.2 | PA3 | ||
11-08 | Continue MDP's | ||||
12. Genetic Algorithms | 11-11 | Q-Learning Q-Learning Demo Q-Learning Exercises (.pdf) |
CH 11.3-11.3.3 | PA4 | Poster Bibliography |
11-13 | Work Day | ||||
11-15 | Local Search andGenetic Algorithms (.pdf) GA Demo |
CH 4.8-4.9 | |||
13. Ethical Issues | 11-18 | Approximate RL Approximate RL Exercises (.pdf) |
|||
11-20 | Ethics and AI | ||||
11-22 | Review Session | ||||
14. Thanksgiving | 11-25 | THANSKGIVING | |||
11-27 | THANSKGIVING | ||||
11-29 | THANSKGIVING | ||||
15. Poster Session and Review |
12-02 | Poster Session | |||
12-04 | Poster Session | ||||
12-06 | PA4 |