
Heuristic Search

The Story So Far...

● The central problem of this course:

– Possibly with some constraints on X.

● (Alternatively:)

arg max
X

Smartness (X)

arg min
X

Stupidness (X)

Properties of Smartness(X)

● Possible categories for , in
decreasing order of desirability:

– Efficient closed-form solution.
● Linear Regression etc.

– Differentiable and convex.
● Quadratic programming (SVMs) etc.

– Differentiable and non-convex.
● Multi-layer Perceptrons etc.

– Non differentiable
● ??

arg max
X

Smartness(X)

Hill Climbing

● Assume that our search problem allows us to take one
of a fixed number of moves.

● Each move transforms the current state to a
successor state.

● States can be evaluated by an objective function.
● Hill Climbing Algorithm:

– Start in an arbitrary state.
– Choose the move that results in the best successor

state.
– Repeat until converged.

Properties of Hill Climbing

● Easy to program.
● Often finds good solutions quickly.
● Very susceptible to local maxima.
● Can be inefficient if many moves are available.
● Lots of variations:

– Stochastic hill climbing – randomly choose an uphill
move.

– Random restart hill climbing – redo search until
satisfied with result.

– Simulated Annealing...

Simulated Annealing

● Avoiding local maxima requires us to take some steps
downhill.

● Simulated Annealing attempts to find the right trade-
off between uphill and downhill moves:

Start in a random state
** Select a random move
* If the move results in improvement, keep it
* If the move does not result in improvement,

 keep it with probability PSA.
* Return to **.

Computing PSA

● PSA decreases as increases. I.e. The
worse the move, the less likely we are to keep it.

● PSA also decreases as (temperature) decreases.
– High temperature: random search.
– Low temperature: randomized hill climbing.

● If we decrease temperature infinitely slowly, we can
guarantee that the global optimum will be found :)

PSA=e

−E
cur

−E
move



T
cur

E
cur

−E
move



T
cur

Genetic Algorithm Design

● (Basic algorithm due to John Holland, 1975)
● First, contrive a mapping from bit strings to your problem

space.
– Genotype -> Phenotype.

● Next, contrive an objective function for evaluating solutions:
– fitness function.
– F(phenotype) = fitness.

Genetic Algorithm
● Generate K bit strings randomly: a population of

individuals.
● **Evaluate the fitness of each individual.
● Assign a probability to each individual proportional to it's

fitness.
● Generate a new population:

– Select 2 individuals (parents) according to probability assigned
above.

– Crossover: Pick a random bit position, and swap all bits after that
position.

– Mutation: flip individual bits with a small independent probability.
– Repeat until we have K new individuals.

● Return to ** unless satisfied.

GA Illustration

(Figure from Russel & Norvig, Artifical Intelligence a Modern Approach.)

Does it Work?

● How well it works has a lot to do with the structure of
the fitness surface.

● Getting it to work well requires carefully engineering
the genotype->phenotype mapping.

● MANY variations:
– Different methods for selecting individuals, rank

ordered instead of proportional, keep the fittest,
etc. etc...

– Co-evolving parasites – evolving test cases.
– Independently evolving “island” populations.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

