
Multi-Layer Neural Networks

Regression vs. Classification

● Now we have the machinery to fit a line (plane,
hyperplane) to a set of data points - regression.

● What about classification?
● First thought:

– For each data point x, set the value of y to be 0 or
1, depending on the class

– Use linear regression to fit the data.
– During classification assume class 0 if y < .5,

assume class 1 if y >= .5.

Classification Example

● The least squares fit does not
necessarily lead to good
classification.

x

y

.5

Classification Boundary

Apply a Sigmoid to the Output

● Let's apply a squashing function to the output of the
network: , where

x

y

.5

h (x)=g(wT x) g a=
1

1e−a


­This also has a biological motivation

­Note that g'(a) = g(a)(1­g(a))

The New Update Rule...

● The partial derivative (for a particular example):

● The new update rule:

● Vector version:

Error (w)=
1
2
(y−g (wT x))

2

∂ Error (w)

∂wi

=(y−g (wT x)) ∂
∂ wi

((y−g (wT x)))

=−(y−g (wT x))g ' (wT x) x i

wi←wi+η(y−g(wT x))g ' (wT x) x i

w←w+η(y−g (wT x))g ' (wT x) x

(This is a lot like “logistic regression” a classical technique from statistics.)

Perceptrons

● Late 50's to mid 60's – Rosenblatt's Perceptrons
(Original paper: The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain, Psychological Review, 65:386-408)

● Original perceptron formulation used a threshold
instead of a sigmoid:

● Learning rule:

g(a) = { 1 if a>0
0 if a≤0 }

w←w+α(t−g (wT x)) x

The Rise and Fall of Perceptrons

● 1969 – Minsky and Papert write Perceptrons.
– Pretty much kills off neural network research.

The Problem...

● The perceptron (any single layer neural network) only
works if the classes are linearly separable.

● XOR is a problem:
A B OUT
0 0 0
0 1 1
1 0 1
1 1 0

B

A

Multiple Output Units

● A network with M output units is nothing more than M
independent perceptrons.

a
0

x
n1 x

1
...

a
1

The Solution

● Multi-layer neural networks can represent arbitrary
functions.

● We already know how to train the weights at the
output layer – this is just a single layer network.

● What about the weights at the hidden layer?

x
21 x

1

a
0

HIDDEN LAYER

INPUT LAYER

OUTPUT LAYER
a

1

Resurgence of Neural Networks

● Rumelhart, D. E. and J. L. McClelland, Ed. (1986).
Parallel distributed processing: Explorations in the
microstructure of cognition.

● Backpropagation!

Backpropagation

● Activation at the output layer:

● Here V and W are weight matrices. Units at the input
layer are indexed with i, hidden with j and output with k.

● Error metric, assuming multiple output units:

● Now just compute and .

ak=g (∑
j

w j , k g(∑
i

vi , j x i))

Error=1
2 ∑

k

(yk−ak)
2

∂ Error
∂w j ,k

∂ Error
∂vi , j

Backprop Update Rules

● Let's define a new error term:

● Where:

● So our learning rule becomes:

δk=Err k×g ' (ink)

Err k= (yk−ak) = (t k−g(ink))

w j , k←w j , k+η×δk×a j

ink=∑
j

w j , k a j

Training the Hidden Layer

● What should the error at the hidden layer be?

● This is the backpropagation in backpropagation
● Now the learning rule at the hidden layer is:

δ j=g ' (in j)∑
k

w j , k δk

vi , j←vi , j+α×δ j×xi

The Backprop Learning Algorithm

● Set all weights to small random values
– **For each training point:

● FORWARD PASS – compute activations for each
layer, starting from the input layer, and working
to the output layer.

● BACKWARD PASS – compute error signals,
starting at the output layer and working to the
input layer.

● UPDATE WEIGHTS
– If the average error is small enough terminate.

Otherwise goto **.

Some Issues/Terminology

● Local Minima
● Epoch
● Stochastic Gradient Descent
● Momentum
● Overfitting
● Autoencoding
● Recurrent Neural Networks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

