
Multi-Layer Neural Networks



Regression vs. Classification

● Now we have the machinery to fit a line (plane, 
hyperplane) to a set of data points - regression. 

● What about classification?  
● First thought: 

– For each data point x, set the value of y to be 0 or 
1, depending on the class

– Use linear regression to fit the data.
– During classification assume class 0 if y < .5, 

assume class 1 if y >= .5.



Classification Example

● The least squares fit does not 
necessarily lead to good 
classification.
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Apply a Sigmoid to the Output

● Let's apply a squashing function to the output of the 
network:                  , where  
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h (x)=g(wT x) g a=
1

1e−a


­This also has a biological motivation

­Note that g'(a) = g(a)(1­g(a))



The New Update Rule...

● The partial derivative (for a particular example): 

● The new update rule: 

● Vector version: 

Error (w)=
1
2
(y−g (wT x))

2

∂ Error (w)

∂wi

=(y−g (wT x)) ∂
∂ wi

((y−g (wT x)))

=−(y−g (wT x))g ' (wT x) x i

wi←wi+η(y−g(wT x))g ' (wT x) x i

w←w+η(y−g (wT x))g ' (wT x) x

(This is a lot like “logistic regression” a classical technique from statistics.)



Perceptrons

● Late 50's to mid 60's – Rosenblatt's Perceptrons 
( Original paper: The Perceptron: A Probabilistic Model for Information Storage and 
Organization in the Brain, Psychological Review, 65:386-408)

● Original perceptron formulation used a threshold 
instead of a sigmoid: 

● Learning rule: 

g(a) = { 1 if a>0
0 if a≤0 }

w←w+α(t−g (wT x)) x



The Rise and Fall of Perceptrons

● 1969 – Minsky and Papert write Perceptrons.
– Pretty much kills off neural network research. 



The Problem...

● The perceptron (any single layer neural network) only 
works if the classes are linearly separable. 

● XOR is a problem:
A B OUT
0 0  0 
0 1  1
1 0  1
1 1  0

B
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Multiple Output Units

● A network with M output units is nothing more than M 
independent perceptrons.
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The Solution

● Multi-layer neural networks can represent arbitrary 
functions.

● We already know how to train the weights at the 
output layer – this is just a single layer network.

● What about the weights at the hidden layer? 
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Resurgence of Neural Networks

● Rumelhart, D. E. and J. L. McClelland, Ed. (1986). 
Parallel distributed processing: Explorations in the 
microstructure of cognition.

● Backpropagation!



Backpropagation

● Activation at the output layer: 

● Here  V and W are weight matrices.  Units at the input 
layer are indexed with i, hidden with j and output with k.

● Error metric, assuming multiple output units:

● Now just compute               and              . 

ak=g (∑
j

w j , k g(∑
i

vi , j x i))

Error=1
2 ∑

k

(yk−ak)
2

∂ Error
∂w j ,k

∂ Error
∂vi , j



Backprop Update Rules

● Let's define a new error term:

● Where:
 

● So our  learning rule becomes:

δk=Err k×g ' (ink)

Err k= (yk−ak) = (t k−g(ink))

w j , k←w j , k+η×δk×a j

ink=∑
j

w j , k a j



Training the Hidden Layer

● What should the error at the hidden layer be?

● This is the backpropagation in backpropagation
● Now the learning rule at the hidden layer is:

δ j=g ' (in j)∑
k

w j , k δk

vi , j←vi , j+α×δ j×xi



The Backprop Learning Algorithm

● Set all weights to small random values
–  **For each training point:

● FORWARD PASS – compute activations for each 
layer, starting from the input layer, and working 
to the output layer.

● BACKWARD PASS – compute error signals, 
starting at the output layer and working to the 
input layer.

● UPDATE WEIGHTS
– If the average error is small enough terminate.  

Otherwise goto **. 



Some Issues/Terminology

● Local Minima
● Epoch
● Stochastic Gradient Descent
● Momentum
● Overfitting
● Autoencoding
● Recurrent Neural Networks
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