Instance Based Learning

Some material on these is slides borrowed from Andrew Moore's excellent machine learning tutorials located at:

http://www.cs.cmu.edu/~awm/tutorials/

Problems with Neural Networks

- Networks learn by tweaking parameters to fit the data.
- Then the data is thrown away.
- Problems:
 - Training to fit new data may erase what we learned before.
 - We need to have the right set of parameters.

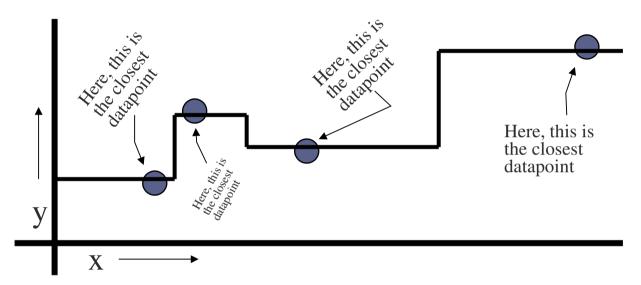
Instance Based Learning

- Keep all of the training data around.
 - Refer back to it when we need to make a prediction
- Simplest example: 1-Nearest Neighbor.
- Given input-output pairs: $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$ that come from some unknown function y = f(x).
- Given a query, find the nearest input point:

$$c = argmin(||\boldsymbol{x}_i - \boldsymbol{x}_q||)$$

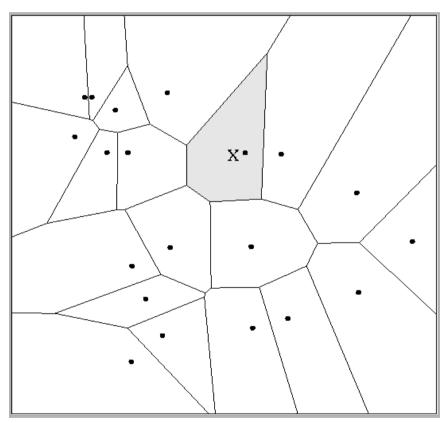
• Then predict $\hat{y} = y_c$

1-Dimensional Example...



http://www.cs.cmu.edu/~awm/tutorials/

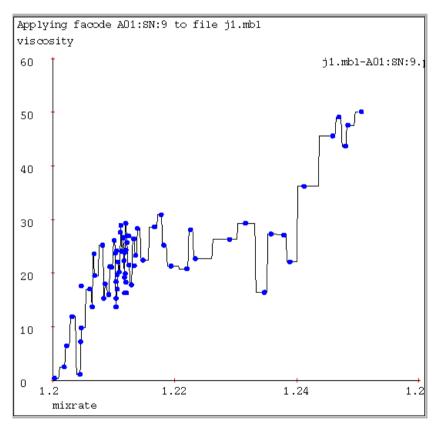
2-Dimensional Example



http://www.cs.cmu.edu/~awm/tutorials/

Problems With 1-NN

- No interpolation.
- Susceptible to noise.

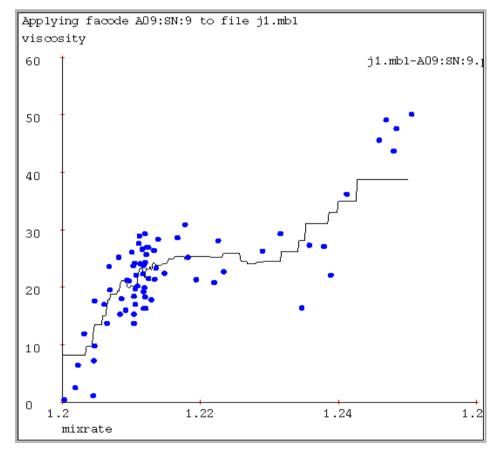


http://www.cs.cmu.edu/~awm/tutorials/

Solution (?) K-NN

- Average the output values of the k nearest neighbors – Better.
- Odd behavior at the edges.
- The fit is jerky.
- (We can find neighbors efficiently using kdtrees)

9-NN



http://www.cs.cmu.edu/~awm/tutorials/

Solution (?) Kernel Regression

- Use <u>all</u> of the training points for every query.
- Take a weighted average, where the weight is based on a kernel function K: $\sum K(x_i, x_q) y_i$

$$\hat{f}(\mathbf{x}_q) = \frac{\sum_{i} K(\mathbf{x}_i, \mathbf{x}_q) y_i}{\sum_{i} K(\mathbf{x}_i, \mathbf{x}_q)}$$

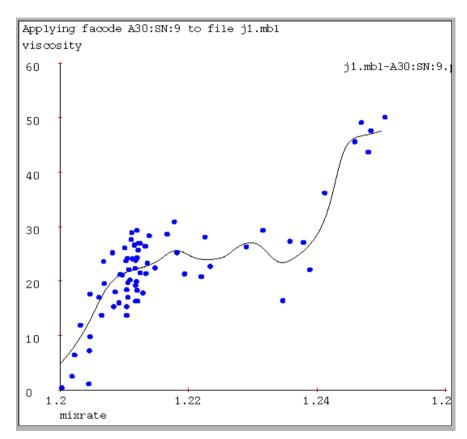
• K is often the Gaussian function:

$$K(\boldsymbol{x_q}, \boldsymbol{x_i}) = \frac{1}{(w^2 \sqrt{2\pi})^d} e^{-\frac{D(\boldsymbol{x_q}, \boldsymbol{x_i})^2}{2w^2}}$$

• Here w controls width, d is the number of dimensions D is distance

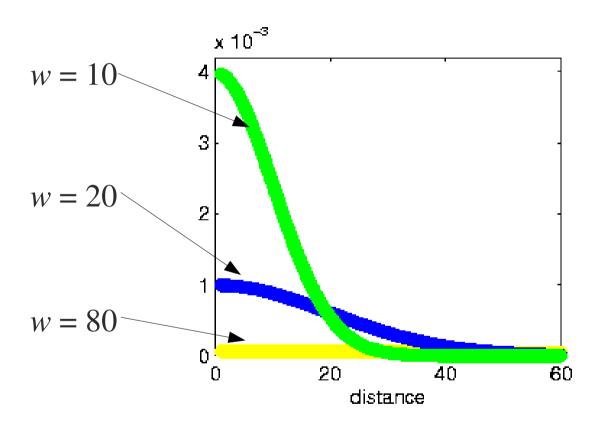
Kernel Regression Example

- Looks better.
- Still a little bumpy.

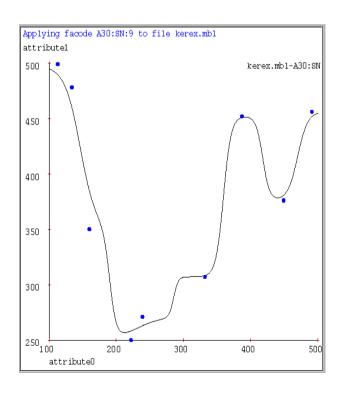


http://www.cs.cmu.edu/~awm/tutorials/

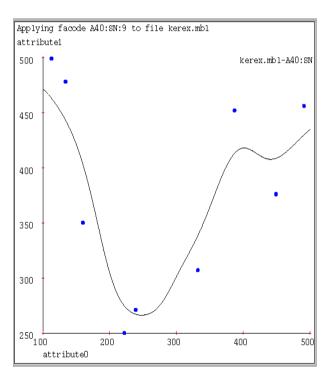
Effect of w on the Kernel Function



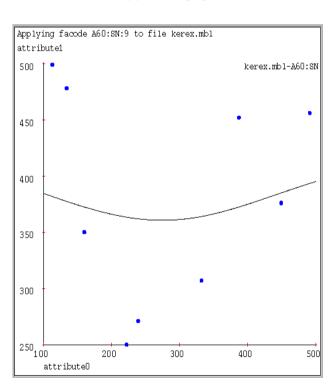
Effect of Changing w on Regression



$$w = 20$$



$$w = 80$$



http://www.cs.cmu.edu/~awm/tutorials/

Locally Weighted Regression

- So far we have been averaging points to come up with a prediction.
- Looks like we are throwing away some useful information.

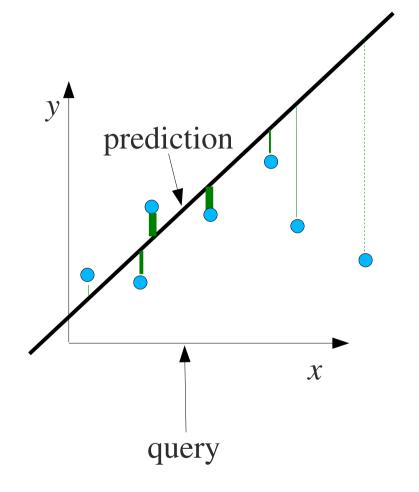
prediction

query

4-NN example

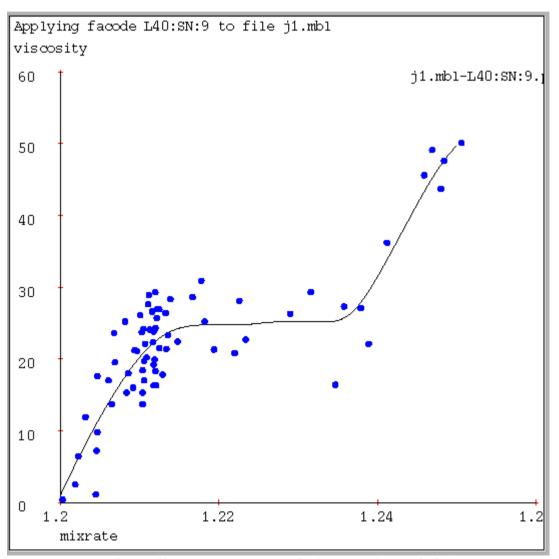
Locally Weighted Linear Regression

- It is easy to find the least squares fit to a line Not much harder to find a weighted least squares fit.
- Get weights from the kernel function.
- Compute output using linear regression instead of averaging.



LWLR Example

Looks pretty good!



http://www.cs.cmu.edu/~awm/tutorials/

Instance Based Learning Recipe

- A distance metric
 - So far euclidean
- How many neighbors to look at
 - 1, k, or all.
- A weighting function
 - Gaussian, none, or other.
- How to fit points.
 - Averaging, least squared linear fit, polynomial fit...

Instance Based Classification

- Very easy to extend these techniques to classification.
- K-NN classification:
 - Find the K-NN to the query point.
 - Return the class that has the most votes.
 - Break ties randomly.
- Kernel classification
 - Exactly the same thing, except weight votes by the kernel function.
- Multi-class classification is just as easy as two class.

Difficulties

- The curse of dimensionality all of this breaks down in high dimensional spaces.
- Distance metric need to be careful if different dimensions are scaled differently.