The schedule below represents my current best estimate concerning due dates (and everything else). I am providing this information to give you a general idea of the pace and timing of the class. This schedule will certainly change as the semester progresses.

Unless otherwise noted, all readings are from

Readings followed by (S) are supplemental. You may find them helpful.

WEEK DATE TOPIC READING/VIDEOS OUT IN
1 01-17 CS 445 Introduction
Introduction to ML
CH 1 PA0
Python Setup

01-19 Trees and Data
Decision Tree Activity (.pdf)
CH 2-2.1
CH 3-3.3
https://scipy-lectures.org/
(1.4.1-1.4.4)
Fast Numpy Video

PA0 Part 1
Python Setup
2 01-24 Numpy Lab
tree_warmup.ipynb (.html)
decision_tree.py


PA0 A
(Before class!)
01-26 Bias/Variance Trade-off App. C1-C1.1
Bias/Variance (1-2)
PA1 PA0 B (11:00PM)
3 01-31 Bias Variance Quiz (.pdf)
Testing And Validation
CH 3.4-3.8

02-02 Curse of Dimensionality CH 2.2-2.4.5
CH 4.1, 4.3


4 02-07 ASSESSMENT DAY


02-09 Class Imbalance
KNN activity
CH 4.11

5 02-14 Probability Intro
Probability Activity
CH 4.4-4.4.2 NB HW PA1
02-16 Engineering Candidate


6 02-21 Naive Bayes CH 4.4.2 PA2
02-23 Bagging
boosting_exercises.pdf
CH 4.10-4.10.5
NB HW
7 02-28 EXAM 1


03-02 Random Forest
random_forest_quiz.pdf
linear_algebra_exercises.pdf
CH 4.10.6
Linear Algebra Review (s)
Section 1-3.7 (skip 3.6)
Video (s)
More Videos (s)


8 03-07 Gradient Descent
Gradient Descent
linear_regression.pdf
linear_regression.py
deeplearningbook.org
Section 4.3.0
Videos
Calculus Refresher (S) 9-14


03-09 Logistic Regression
exercises
CH 4.6
PA2
9 03-14 SPRING BREAK


03-16 SPRING BREAK


10 03-21 MLP
pytorch_intro.ipynb
CH 4.7
PyTorch Tensors
PyTorch Autograd
Poster Project
03-23 PyTorch
CIFAR 10 Lab
PyTorch Tutorial

11 03-28 Autodiff (.pdf)
autodiff_exercise.pdf
Autodiff Video PA3
03-30 Regularization Etc.
Neural Net Questions (.pdf)
CH 4.8
deeplearningbook.org
7 - 7.1.2, 7.4
7.12 (s)
8.2.2 - 8.2.4, 8.3.2

Poster Proposal
12 04-04 Convnets
Convnets (.pdf)
convnet_exercise.pdf
https://setosa.io/ev/image-kernels/
CNN Intro 1/3
CNN Intro 2/3
CNN Intro 3/3 (s)


04-06 Word Embeddings
RNNs
rnn_exercises.ipynb
Word Embedding Tutorial
"Unreasonable Effectiveness"
deeplearningbook.org
10-10.2.0 (s)

Poster Bibliography
13 04-11 EXAM 2


04-13 Transformers LSTM Tutorial
Attention Survey (Through Section 3)


14 04-18 SVM
SVM Exercises (.pdf)
CH 4.9
PA3
04-20 PCA
pca.ipynb
pca2.ipynb
Covariance Tutorial
Video
Appendix B.1.1


15 04-25 Nonlinear Dimensionality Reduction
PDSH: Manifold Learning

04-27 Clustering
Outlier Detection
cluster_hw.pdf
CH 7-7.2.2
CH 7.3-7.4
CH 7.5 (skim)
CH 8.1

CH 9-9.3.1, 9.4
Skim 9.5-end

Poster Submission
16 05-02 Poster Session


05-04 Final Review



05-09 Final Exam