The schedule below represents my current best estimate concerning due dates (and everything else). I am providing this information to give you a general idea of the pace and timing of the class. This schedule will certainly change as the semester progresses.
Unless otherwise noted, all readings are from
WEEK | DATE | TOPIC | READING/VIDEOS | OUT | IN |
1 | 01-17 | CS 445 Introduction Introduction to ML |
CH 1 | PA0 Python Setup |
|
01-19 | Trees and Data Decision Tree Activity (.pdf) |
CH 2-2.1 CH 3-3.3 https://scipy-lectures.org/ (1.4.1-1.4.4) Fast Numpy Video |
PA0 Part 1 Python Setup |
||
2 | 01-24 | Numpy Lab tree_warmup.ipynb (.html) decision_tree.py |
PA0 A (Before class!) |
||
01-26 | Bias/Variance Trade-off | App. C1-C1.1 Bias/Variance (1-2) |
PA1 | PA0 B (11:00PM) | |
3 | 01-31 | Bias Variance Quiz (.pdf) Testing And Validation |
CH 3.4-3.8 | ||
02-02 | Curse of Dimensionality | CH 2.2-2.4.5 CH 4.1, 4.3 |
|||
4 | 02-07 | ASSESSMENT DAY | |||
02-09 | Class Imbalance KNN activity |
CH 4.11 | |||
5 | 02-14 | Probability Intro Probability Activity |
CH 4.4-4.4.2 | NB HW | PA1 |
02-16 | Engineering Candidate | ||||
6 | 02-21 | Naive Bayes | CH 4.4.2 | PA2 | |
02-23 | Bagging boosting_exercises.pdf |
CH 4.10-4.10.5 | NB HW | ||
7 | 02-28 | EXAM 1 | |||
03-02 | Random Forest random_forest_quiz.pdf linear_algebra_exercises.pdf |
CH 4.10.6 Linear Algebra Review (s) Section 1-3.7 (skip 3.6) Video (s) More Videos (s) |
|||
8 | 03-07 | Gradient Descent Gradient Descent linear_regression.pdf linear_regression.py |
deeplearningbook.org Section 4.3.0 Videos Calculus Refresher (S) 9-14 |
||
03-09 | Logistic Regression exercises |
CH 4.6 | PA2 | ||
9 | 03-14 | SPRING BREAK | |||
03-16 | SPRING BREAK | ||||
10 | 03-21 | MLP pytorch_intro.ipynb |
CH 4.7 PyTorch Tensors PyTorch Autograd |
Poster Project | |
03-23 | PyTorch CIFAR 10 Lab |
PyTorch Tutorial | |||
11 | 03-28 | Autodiff (.pdf) autodiff_exercise.pdf |
Autodiff Video | PA3 | |
03-30 | Regularization Etc. Neural Net Questions (.pdf) |
CH 4.8 deeplearningbook.org 7 - 7.1.2, 7.4 7.12 (s) 8.2.2 - 8.2.4, 8.3.2 |
Poster Proposal | ||
12 | 04-04 | Convnets Convnets (.pdf) convnet_exercise.pdf |
https://setosa.io/ev/image-kernels/ CNN Intro 1/3 CNN Intro 2/3 CNN Intro 3/3 (s) |
||
04-06 | Word Embeddings RNNs rnn_exercises.ipynb |
Word Embedding Tutorial "Unreasonable Effectiveness" deeplearningbook.org 10-10.2.0 (s) |
Poster Bibliography | ||
13 | 04-11 | EXAM 2 | |||
04-13 | Transformers | LSTM Tutorial Attention Survey (Through Section 3) |
|||
14 | 04-18 | SVM SVM Exercises (.pdf) |
CH 4.9 | PA3 | |
04-20 | PCA pca.ipynb pca2.ipynb |
Covariance Tutorial Video Appendix B.1.1 |
|||
15 | 04-25 | Nonlinear Dimensionality Reduction |
PDSH: Manifold Learning | ||
04-27 | Clustering Outlier Detection cluster_hw.pdf |
CH 7-7.2.2 CH 7.3-7.4 CH 7.5 (skim) CH 8.1 CH 9-9.3.1, 9.4 Skim 9.5-end |
Poster Submission | ||
16 | 05-02 | Poster Session | |||
05-04 | Final Review | ||||
05-09 | Final Exam |