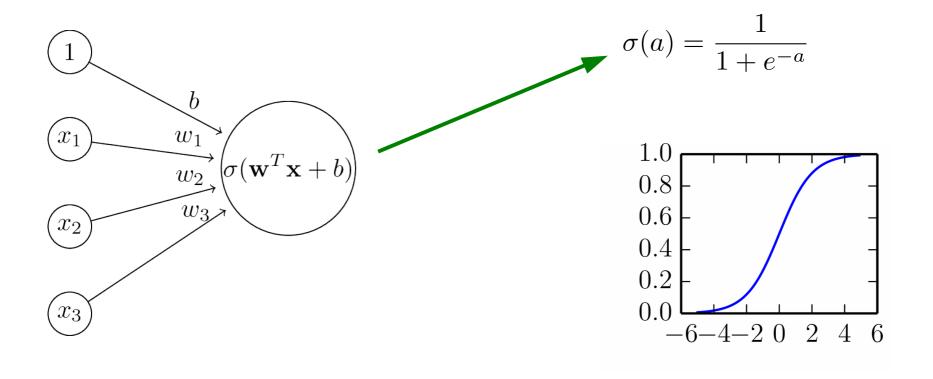
Multi-Layer Neural Networks

Review: Logistic Regression

"Neuron"

Non-linearity



Softmax Activation

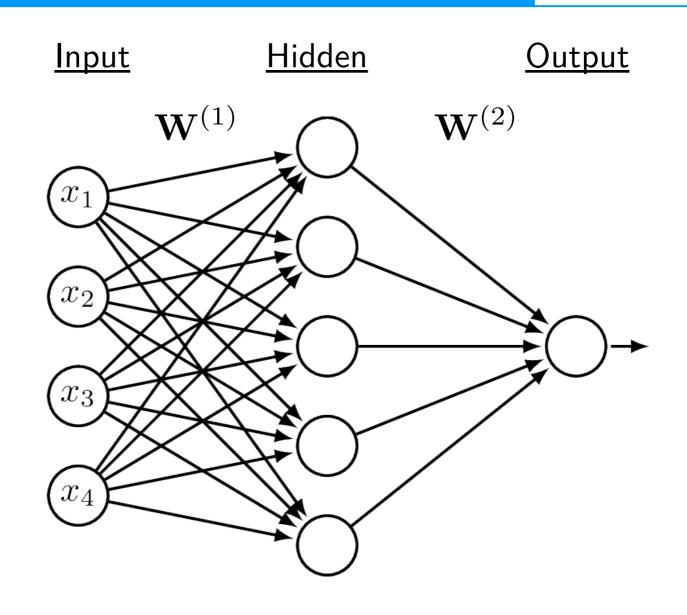
- What if we have a multi-class problem?
- Softmax for K classes:

$$\sigma(\mathbf{a})_i = \frac{e^{a_i}}{\sum_{j=1}^K e^{a_j}}$$

- The activations a_i are called **logits**.
- Cross-entropy loss function. The target vector y is "one-hot encoded".

$$Loss = -\sum_{i=1}^{K} y_i \log(\sigma(\mathbf{a})_i)$$

Multi-Layer Networks



Neural Network Example

Training Data

 \mathbf{x} y

 $egin{smallmatrix} eta & 1 \ eta & 1 \end{matrix}$

 $\neq 0$

 $ec{f z}
ightarrow \dot{f 1}$

 $\mathbf{Z} \to 0$

 $H \rightarrow 0$

 $\mathbf{3} \rightarrow 1$

 $\mathbf{Z} \rightarrow 0$

 $I \rightarrow 0$

 $\stackrel{2}{3} \rightarrow \stackrel{1}{1}$

 $\mathbf{I} \to 0$

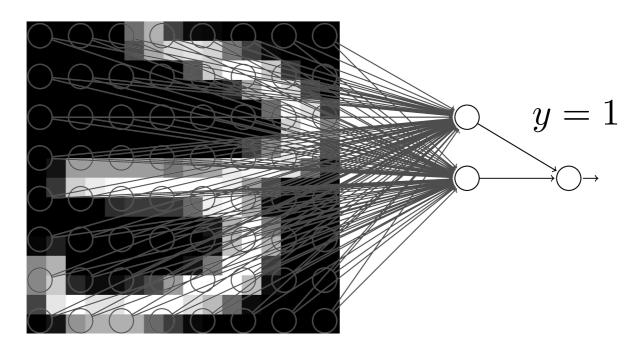
 $I \to 0$

 $\rightarrow 1$

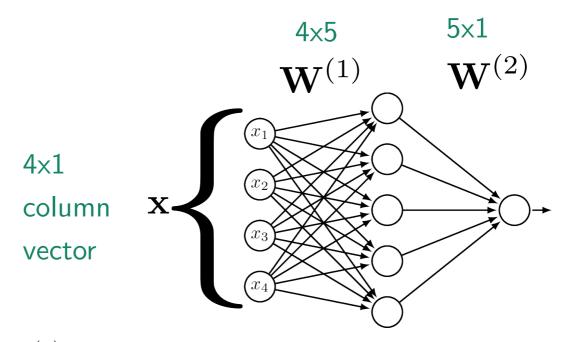
:

<u>Network</u>

 \mathbf{X}



Computation Example

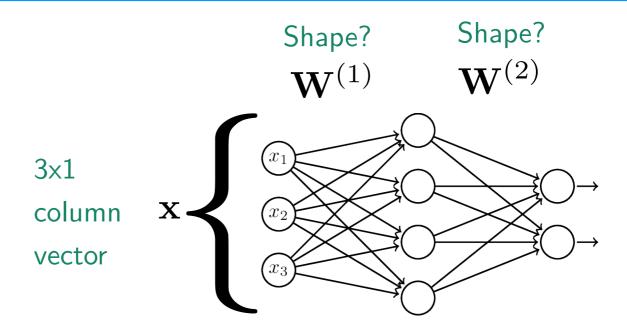


Hidden activation: $h(\mathbf{x}^\mathsf{T} W^{(1)})$

Output activation: $\sigma\left(h(\mathbf{x}^\mathsf{T} W^{(1)})W^{(2)}\right)$

(h is the non-linearity at the hidden layer. σ is the non-linearity at the output. Applied element-wise.)

QUIZ

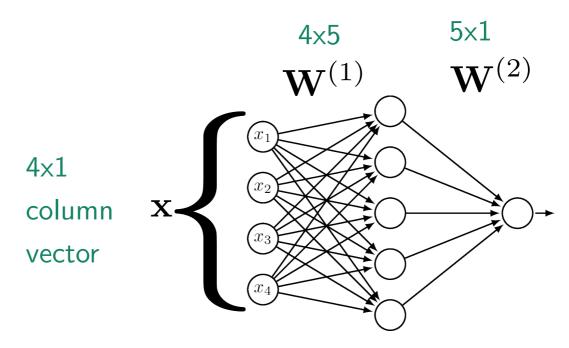


Hidden activation: $h(\mathbf{x}^\mathsf{T} W^{(1)})$

Output activation: $\sigma\left(h(\mathbf{x}^\mathsf{T} W^{(1)})W^{(2)}\right)$

(h is the non-linearity at the hidden layer. σ is the non-linearity at the output. Applied element-wise.)

Bias Weights



Hidden activation: $h(\mathbf{x}^{\mathsf{T}}W^{(1)} + \mathbf{b}^{(1)})$

Output activation: $\sigma \left(h(\mathbf{x}^\mathsf{T} W^{(1)} + \mathbf{b}^{(1)}) W^{(2)} + b^{(2)} \right)$

(h is the non-linearity at the hidden layer. σ is the non-linearity at the output. Applied element-wise.)

Backpropagation

Activation at the output layer:

$$a_k = \sigma \left(\sum_j w_{j,k}^{(2)} h \left(\sum_i w_{i,j}^{(1)} x_i \right) \right)$$

- Here σ is the activation function at the output layer. Units at the input layer are indexed with i, hidden with j and output with k.
- Error metric, assuming multiple output units:

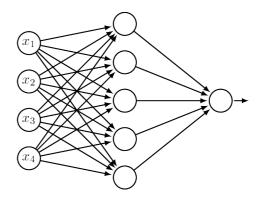
$$Loss = \frac{1}{k} \sum_{k} (y_k - a_k)^2 \qquad Loss = -\sum_{i=1}^{K} y_i \log(\sigma(\mathbf{a})_i)$$

• Now just compute $\frac{\partial Loss}{\partial w_{i,k}^{(2)}}$ and $\frac{\partial Loss}{\partial w_{i,j}^{(1)}}$.

Backpropagation Algorithm

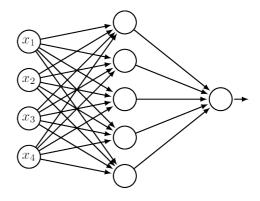
• Forward Pass:

Activation



Backward Pass:

Error Signal



Backpropagation: Some Good News

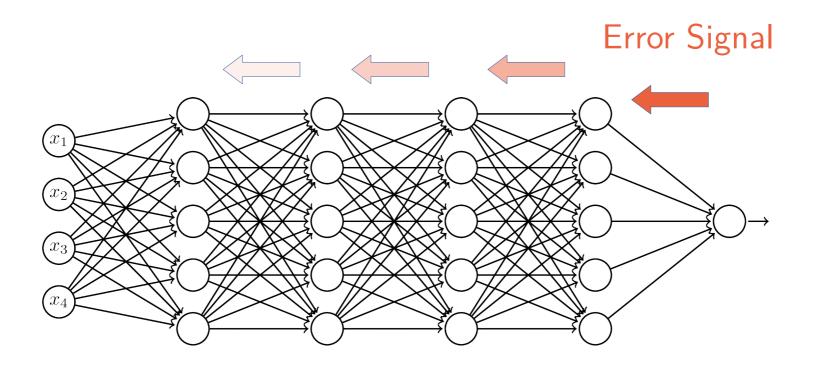
- Calculating partial derivatives is tedious, but mechanical
- Modern neural network libraries perform automatic differentiation
 - Tensorflow
 - PyTorch
 - Etc.
- The programmer just needs to specify the network structure and the loss function – No need to explicitly write code for performing weight updates
- The computational cost for the backward pass is not much more than the cost for the forward pass

Deep vs. Shallow

Networks

- How best to add capacity?
 - More units in a single hidden layer?
 - Three layer networks are universal approximators: with enough units any continuous function can be approximated
 - Adding layers makes the learning problem harder...

Vanishing Gradients



Advantages of Deep Architectures

- There are tasks that require exponentially many hidden units for a three-layer architecture, but only polynomially many with more hidden layers
- The best hand-coded image processing algorithms have deep structure
- The brain has a deep architecture
- MORE SOON.