Deep NLP



* For some tasks, we can get amazingly far with
“bag-of-words” representations...

~ Document classification/clustering

~ Spam detection

* For some tasks, word order is crucial...



* 2016 — Google Translate 60% Reduction in
translation errors

* Oct. 25t 2019 BERT used in Google search

https: / /www.blog.google /products/search /search-
language-understanding-bert/

* Nov, 2022 — ChatGPT released by OpenAl
https://openai.com/blog/chatgpt


https://www.blog.google/products/search/search-language-understanding-bert/
https://www.blog.google/products/search/search-language-understanding-bert/
https://openai.com/blog/chatgpt

* Original encoder/decoder

architecture:
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* Both encoder and decoder
are multi-layer LSTMs

OMary admires John

OMary is in love with John

OMary respects John
OdJohn admires Mary

OJohn is in love with Mary

OdJohn respects Mary
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I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural

Networks,” in Advances in Neural Information Processing Systems 27, 2014, pp. 3104—

3112.
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Alignment model
is a simple
feedforward

network

Bahdanau, D., Cho, K. H., & Bengio, Y. (2015, January). Neural machine translation by

jointly learning to align and translate. In 3rd International Conference on Learning
Representations, ICLR 2015.




* English to French
translation

The
agreement
on

the
European
Economic
Area

* Each “pixel” shows the sccord
corresponding Q; e

<end>

Bahdanau, D., Cho, K. H., & Bengio, Y. (2015, January). Neural machine translation by

jointly learning to align and translate. In 3rd International Conference on Learning
Representations, ICLR 2015.
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* Impossible to parallelize!
®* One alternative is CNN's

* Another is transformer networks...
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Scaled Dot-Product Attention KT

Attention(Q, K,V) = softmax(%)v
k

Think of Q, K and V as projected versions of

the activations from the previous layer: if Q.
“matches” Kj, then \/J is selected as the

output.

A. Vaswani et al., “Attention is All you Need,” in Advances in
Neural Information Processing Systems 30, 2017.




MultiHead(Q, K, V) = Concat(head, ..., head, )W ©°
where head; = Attention(QWiQ, K WiK , VW@-V)

Where the projections are parameter matrices W2 € RémdaXdi K ¢ RibmoaeXdi 7V Rifmosa < dy
and WO ¢ R/dv X dmoset
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A. Vaswani et al., “Attention is All you Need,” in Advances in
Neural Information Processing Systems 30, 2017.




* Pre-train a transformer
on unsupervised
language tasks:

~ Predicting masked words

~ Next sentence prediction

* Fine tune on the
supervised task of
Interest
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[SEP] 1
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Language Understanding,” 2019

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for




* GPT-3 architecture is similar to BERT, except it
is not bi-directional: only predicts future symbols.

* Conclusion: If the model is big enough, fine-tuning
s less important, or not needed.

~— They describe this as “one shot” or “few shot”
learning. No weight updates, “learning” from the text
of the query.

* Bigger is better...

Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems
33 (2020)




Accuracy

GPT-3 Training Curves
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Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems
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“This report focuses on the capabilities, limitations, and safety properties of GPT-4. GPT-4 is a
Transformer-style model [39 ] pre-trained to predict the next token in a document, using both publicly
available data (such as internet data) and data licensed from third-party providers. The model was
then fine-tuned using Reinforcement Learning from Human Feedback (RLHF) [40 ]. Given both

the competitive landscape and the safety implications of large-scale models like GPT-4, this report
contains no further details about the architecture (including model size), hardware, training compute,

dataset construction, training method, or similar.”

GPT-4 Technical Report, OpenAl (2023)
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