The schedule below represents my current best estimate concerning due dates (and everything else). I am providing this information to give you a general idea of the pace and timing of the class. This schedule will certainly change as the semester progresses.

Unless otherwise noted, all readings are from

Readings followed by (S) are supplemental. You may find them helpful.

WEEK DATE TOPIC READING/VIDEOS OUT IN
1. Uninformed Search 01-08 Introduction/Syllabus CH 1 HW1, PA1
01-10 Uninformed Search (.pdf)
Minimum Cost Search (.pdf)
search_exercises.pdf
CH 3-3.5.4, 3.7.1-3.7.2
Search Videos
Berkeley Video (S)

Reading Quiz
Background Survey
(Canvas)
01-12 A*


astar_activity.pdf
CH 3.6, CH 3.7, 3.8.2
http://en.wikipedia.org/wiki/NP-complete
A* Videos
Berkeley Video (S)


2. Informed Search 01-15 MLK Day

HW1
01-17 Snow Day


01-19 Discuss Turing Paper Computing Machinery and Intelligence

3. Adversarial Search 01-22
Minimax (.pdf)
minimax_activity.pdf
CH 11.2-11.2.2,11.3
Minimax Videos
Berkeley Video (S)

Poster Project
PA1
01-24 Expectimax + Evaluation Functions
MIT AI:6.034 Games and Utility Handout (Exercises 1 and 3)
CH 8.1.4 (s)
Evaluation Function Video (Through 37:00)
Expectimax Video (First 19min)
PA2
01-26 Constraint Satisfaction Problems CH 4-4.4
Skim CH 4.5-4.6
CSP Videos
git tutorial
Github tutorial


4. Logic 01-29 Propositional Logic Exercises (.pdf) CH 5-5.1, 5.3
Propositional Logic Videos

PA2A
01-31
resolution_exercises.pdf
Propositional Resolution Chapter
Propositional Resolution Videos


02-02 Predicate Logic
pred_logic.pdf
CH 13-13.3.1
Predicate Logic Video (Through 16:00)
Predicate Logic Review (section 4) (s)


5. Midterm 02-05 Inference in Predicate Logic
pred_logic_proofs.pdf
CH 13.3.2-13.4
Resolution Notes (8.3-8.4)
Videos

PA2
02-07 (Snow day)
Linear Algebra
Linear Algebra (.pdf)
linear_algebra_exercises.pdf
Linear Algebra Review and Reference (.pdf)
sections 1-3.7, (skip 3.6)
Linear Algebra Video
HW2
02-09 Midterm Review


6. Machine Learning 02-12 Midterm #1
PA3
02-14
Gradient Descent +Linear Regression (.pdf)
gradient_descent_exercises.pdf
CH 4.9.2, 7-7.2.1
CH 7.3.2 (skim)
Calculus Refresher (.pdf) (9-14) (s)
Videos

HW2 (9:00 AM)
02-16 Numpy exercises (.pdf)
numpy_exercises.py
Numpy Tutorial (only Numpy Section)

7. Machine Learning 02-19 Classification
Classification (.pdf)
single_layer_network.py
usps.npy
CH 7.3.2
Videos


02-21 Multi-layer Neural Networks (.pdf) CH 7.5
Videos


02-23 Convolutional Neural Networks (.pdf)
Convolutional NN activity (.pdf)
CNN Tutorial

8. Machine Learning 02-26 Validation
K-Nearest Neighbors
Validation (.pdf)
K-Nearest Neighbors (.pdf)
7.4 (skip 7.4.1)
7.7
Videos


02-28 Decision Trees
Decision Tree Activity (.pdf)
7.3.1
Video

PA3
03-02 Ensemble Method Activity CH 7.6
Videos

Poster Proposal
9. Spring Break
03-05 SPRING BREAK


03-07 SPRING BREAK


03-09 SPRING BREAK


10. Probabilistic AI 03-12 Start PA4
PA4
03-14 Support Vector Machines
Supervised Learning Wrap
SVM Tutorial

03-16 Intro Probability
Intro Probability
Probability Activity (.pdf)
CH 8.1-8.2
Videos


11. Probabilistic AI 03-19 Belief Nets
Naive Bayes Classifier
Belief Nets
Video (s)
CH 8.3, 10.1.2


03-21 Inference in Belief Nets
(Snow Day)
Videos (s)
CH 8.4 (s)
HW3
03-23 Markov Models (.pdf)
Markov Model Activity (.pdf)
CH 8.5-8.5.2
Video

HW3 (11:00PM)
12. Midterm 03-26 Hidden Markov Models
filtering.pdf
CH 8.5.3-8.5.5
CH 8.5.6 (s)
Videos

PA4
03-28 Review

Poster Bibliography
03-30
EXAM 2



13. Reinforcement Learning 04-02 Markov Decision Processes
mdp_activity.pdf
CH 9.5-9.5.3
Video


04-04 Q-Learning
q_learning_activity.pdf
CH 12-12.5
Video (first 17 min at least)
PA5
04-06 Approximate Q-Learning
approx_rl_activity.pdf
Video

14. Unsupervised Learning 04-09 Genetic Algorithms
Genetic Algorithms (.pdf)
GA Demo
CH 4.7-4.8
Genetic Algorithms (.pdf)


04-11 K-Means Clustering
K-Means Activity
CH 10.2-10.2.1
Video


04-13 Normal Distribution
Expectation Maximization
Multivariate Statistics Tutorial 6.5.1, 6.5.4-6.5.4.2
Videos

Poster Submission
15. Poster Sessions 04-16 Work Day


04-18 Ethics and AI The Ethics of Artificial Intelligence (.pdf)
Videos


04-20 POSTER SESSION


16. Ethics and Review 04-23 POSTER SESSION



04-25 Review

PA5