Linear Regression, Neural Networks, etc.

CS444
 Nathan Sprague James Madison University

Neurons

- Neurons communicate using discrete electrical signals called "spikes" (or action potentials).
- Spikes travel along axons.
- Reach axon terminals.
- Terminals release neurotransmitters.
- Postsynaptic neurons respond by allowing current

Beginning Psychology (v. 1.0).
http://2012books.lardbucket.org/books/beginning-psychology/
Creative Commons by-nc-sa 3.0

- If voltage crosses a threshold a spike is created

Multivariate Linear Regression

- Multi-dimensional input vectors:

$$
h\left(x_{1}, x_{2}, \ldots, x_{n}\right)=w_{0}+w_{1} x_{1}+\ldots+w_{n} x_{n}
$$

- Or:

$$
h(x)=w^{T} \boldsymbol{x}
$$

Linear Regression - The Neural

View

- input $=x$, desired output $=y$, weight $=w$.
- $h(x)=w x$

- We are given a set of inputs, and a corresponding set of outputs, and we need to choose w.
- What's going on geometrically?

Lines

- $h(x)=w x$ is the equation of a line with a y intercept of 0 .
- What is the best value of w ?
- How do we find it?

Bias Weights

- We need to use the general equation for a line:

$$
h(x)=w_{1} x+w_{0}
$$

- This corresponds to a new neural network with one additional weight, and an input fixed at 1.

Error Metric

- Sum squared error (y is the desired output):

$$
\text { Error }_{E}=\sum_{e \in E} \frac{1}{2}\left(y_{e}-h\left(\boldsymbol{x}_{\boldsymbol{e}}\right)\right)^{2}
$$

- The goal is to find a w that minimizes E. How?

Gradient Descent

http://en.wikipedia.org/wiki/File:Glacier_park1.jpg
Attribution-Share Alike 3.0 Unported

Gradient Descent

- One possible approach (maximization):
1)take the derivative of the function: $f^{\prime}(w)$

2) guess a value of $w: \hat{w}$
3)move \hat{w} a little bit according to the derivative:

$$
\hat{w} \leftarrow \hat{w}+\eta f^{\prime}(\hat{w})
$$

4)goto 3 , repeat.

Partial Derivatives

- Derivative of a function of multiple variables, with all but the variable of interest held constant.

$$
f(x, y)=x^{2}+x y^{2}
$$

$$
f_{x}(x, y)=2 \mathrm{x}+y^{2}
$$

$$
f_{y}(x, y)=2 \mathrm{xy}
$$

OR
OR

$$
\frac{\partial f(x, y)}{\partial x}=2 x+y^{2}
$$

$$
\frac{\partial f(x, y)}{\partial y}=2 \mathrm{xy}
$$

Gradient

- The gradient is just the generalization of the derivative to multiple dimensions.
- Gradient descent update:

$$
\nabla f(\boldsymbol{w})=\left|\begin{array}{c}
\frac{\partial f(\boldsymbol{w})}{\partial w_{1}} \\
\frac{\partial f(\boldsymbol{w})}{\partial w_{2}} \\
\vdots \\
\frac{\partial f(\boldsymbol{w})}{\partial w_{n}}
\end{array}\right|
$$

$$
\hat{\boldsymbol{w}} \leftarrow \hat{w}-\eta \nabla f(\hat{\boldsymbol{w}})
$$

Gradient Descent for MVLR

- Error for the multi-dimensional case:

$$
\begin{gathered}
\operatorname{Error}_{E}(\boldsymbol{w})=\sum_{e \in E} \frac{1}{2}\left(y_{e}-\boldsymbol{w}^{T} \boldsymbol{x}_{\boldsymbol{e}}\right)^{2} \\
\frac{\partial \operatorname{Error}_{E}(\boldsymbol{w})}{\partial w_{i}}=\sum_{e \in E}\left(y_{e}-\boldsymbol{w}^{T} \boldsymbol{x}_{\boldsymbol{e}}\right)\left(-x_{e, i}\right) \\
=-\sum_{e \in E}\left(y_{e}-\boldsymbol{w}^{T} \boldsymbol{x}\right) x_{e, i}
\end{gathered}
$$

- The new update rule: $w_{i} \leftarrow w_{i}+\eta \sum_{e \in E}\left(y_{e}-\boldsymbol{w}^{T} \boldsymbol{x}\right) x_{e, i}$
- Vector version:

$$
\boldsymbol{w} \leftarrow w+\eta \sum_{e \in E}\left(y_{e}-w^{T} \boldsymbol{x}\right) \boldsymbol{x}_{e}
$$

Analytical Solution

$$
\boldsymbol{w}=\left(X^{T} X\right)^{-1} X^{T} y
$$

- Where X is a matrix with one input per row, y the vector of target values.

Notice that we get Polynomial Regression for Free

$$
y=w_{1} x^{2}+w_{2} x+w_{0}
$$

