Activity 5: Boolean Logic

The primitive data type boolean has two values: true and false. Boolean expressions are built using relational operators and conditional operators.

Content Learning Objectives

After completing this activity, students should be able to:

- Recognize the value of developing process skills.
- Evaluate boolean expressions with relational operators (<,>, <=, >=, ==,! !=).
- Explain the difference between assignment (=) and equality (==) operators.
- Evaluate boolean expressions that involve comparisons with \&\&, I I, and !.

Process Skill Goals

During the activity, students should make progress toward:

- Evaluating complex logic expressions based on operator precedence. (Critical Thinking)

Model 1 What Employers Want

"What do employers look for when they are seeking new college graduates to take on jobs? According to NACE's Job Outlook 2016 survey, they are looking for leaders who can work as part of a team." http://www.naceweb.org/s11182015/employers-look-for-in-new-hires.aspx

Attributes employers seek on a candidate's resume

	Attribute	\% of respondents
1.	Leadership	80.1%
2.	Ability to work in a team	78.9%
3.	Communication skills (written)	70.2%
4.	Problem-solving skills	70.2%
5.	Communication skills (verbal)	68.9%
6.	Strong work ethic	68.9%
7.	Initiative	65.8%
8.	Analytical/quantitative skills	62.7%
9.	Flexibility/adaptability	60.9%
10.	Technical skills	59.6%

Questions (10 min)
Start time: \qquad

1. What is the relationship between the top two attributes employers seek?
2. How is communication (written and verbal) related to problem-solving?
3. As a team, come up with a short description/example of each attribute.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14. Which of these skills do you expect to develop in this course? Why?

Model 2 Relational Operators

Some IDEs (including DrJava) have an "Interactions" feature that allows you to enter a single line of code and see what it does. If you type an expression like $1+2$ and leave off the semicolon, it will display the resulting value (i.e., 3). In the table below, predict what values will be displayed and identify the relational operator. The first four rows are completed for you.

Interactions	Value displayed	Relational operator
int three $=3$	none	none
int four $=4$	none	none
System.out.println(four)	4	none
three > four	false	$>$
boolean isLarger = three > four		
System.out.println(isLarger)		
three == four		
three < four		
three <= four		
three $=$ four		
three == four		

Questions (15 min)

Start time: \qquad
5. List the four unique boolean expressions used in Model 2.
6. Examine the fifth line of Java code in the above model.
a) What three actions are performed in this single line of code?
b) Write two lines of code, ending with semicolons, that would perform these same actions (but in two lines instead of a single line).
7. The $!=$ operator means "not equals". Give an example of a boolean expression that uses $!=$ and evaluates to false.
8. Explain why the same boolean expression three == four resulted with two different values in the table.
9. What is the difference between $=$ and $==$ in Java?
10. List the six relational operators that can be used in a boolean expression. (Five have been used so far, but you should be able to guess the sixth.) Explain briefly what each one means.

Model 3 Conditional Operators

Boolean expressions use conditional operators to implement basic logic. If all three operators appear in the same expression, Java will evaluate ! first, then \&\&, and finally II. If there are multiples of the same operator, they are evaluated from left to right. Relational operators are evaluated before \&\& and II, so there is generally no need for parentheses.

Operator	Meaning
$!$	not
$\& \&$	and
11	or

Example Variables:

```
int a = 3;
int b = 4;
int c = 5;
boolean funny = true;
boolean weird = false;
```


Example Expressions:

$\mathrm{a}<\mathrm{b}$ \&\& funny
$\mathrm{a}<\mathrm{b}$ \&\& b<c
$\mathrm{c}<\mathrm{a} \| \mathrm{b}<\mathrm{a}$
funny \&\& a < c
!funny || weird

Questions (20 min)

Start time:

\qquad
11. What are the values (true or false) of the example expressions?
12. Give different examples of boolean expressions that:
a) uses a, b, and !, and evaluates to false
b) uses b, c, and !, and evaluates to true
c) uses any variables, but evaluates to false
d) uses any variables, but evaluates to true
13. Using your answers from the previous question, write the boolean expression p \&\& q where p is your answer to step a) and q is your answer to step b).
a) Your expression:
b) Result of p \&\& q :
14. Complete the following table:

p	q	$\mathrm{p} \& \& \mathrm{q}$	$\mathrm{p}\\|\\| \mathrm{q}$	$!\mathrm{p}$
false	false			
false	true			
true	false			
true	true			

15. Using the values in Model 3, give the result of each operator in the following expression. In other words, show your work as you evaluate the code in the same order that Java would.

$$
!(\mathrm{a}>\mathrm{c}) \& \& \mathrm{~b}>\mathrm{c}
$$

	Operator	Expression	Result
1st	$>$	$\mathrm{a}>\mathrm{c}$	false
2nd			
3rd			
4th			

16. Add parentheses to the boolean expression from the previous question so that the \&\& is evaluated before the !. Then remove any unnecessary parentheses.
a) Expression:
b) New result:
17. Review the table from \#14 for evaluating \&\& and II. Looking only at the p and \&\& columns, when is it necessary to examine q to determine how p \&\& q should be evaluated?
18. Review the table from \#14 for evaluating \&\& and II. Looking only at the p and || columns, when is it necessary to examine q to determine how p \| q should be evaluated?
19. In Java, \&\& and II are short circuit operators, meaning they evaluate only what is necessary. If the expression p is more likely to be true than the expression q, which one should you place on the left of each operator to avoid doing extra work?
a) left of the \&\& expression:
b) left of the II expression:
20. What is the result of the following expressions?
a) $1+0>0 \& \& 1 / 0>0$
b) $1+0>0| | 1 / 0>0$
