
Activity 10: Classes and UML
The String class provides methods for working with text. The Random class provides methods
for generating random numbers. In this activity, you’ll learn how to make your own classes
that represent everyday objects.

Content Learning Objectives

After completing this activity, students should be able to:

• Define the terms: attribute, method, constructor, instance.

• Implement non-static methods based on a UML diagram.

• Distinguish between static, instance, parameter, and local variables.

Process Skill Goals

During the activity, students should make progress toward:

• Writing method signatures exactly as shown in a UML diagram. (Information Processing)

Copyright © 2017 Chris Mayfield and Helen Hu. This work is licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



Model 1 The Die Class

When you define a class in Java, you are defining a new data type. Classes have attributes (data)
and methods (code). A class diagram is a graphical summary of the attributes and methods.

/**

* Simulates a Die object.

*/

public class Die {

private int face;

/**

* Constructs a new die with a random face value.

*/

public Die() {

this.face = 1;

}

/**

* Gets the current face value of the die.

*

* @return current face value of the die

*/

public int getFace() {

return this.face;

}

/**

* Simulates the roll of the die.

*

* @return new face value of the die

*/

public int roll() {

this.face = (int) (Math.random() * 6) + 1;

return this.face;

}

}



Questions (10 min) Start time:

1. What are the attributes of Die? What are the methods?

2. In the class diagram, what do the - and + symbols represent? What does the : represent?

3. Write a statement that declares a Die variable named lucky.

4. Each instance of a class (in memory) is called an object. Write a statement that instantiates a
new Die object and assigns it to lucky.

5. When you instantiate an object, you invoke a constructor. This method has no return type
and has the same name as the class itself. What does the Die constructor do?

6. Notice how the roll method refers to face, yet that variable is not declared in the method.
What does the roll method change, in terms of the Die object?

7. What is the purpose of the getFace method? Show how you would use it in a main method
of another class.



Model 2 The Circle Class

Unified Modeling Language (UML) provides a way of graphically illustrating a class’s design,
independent of the programming language.

Questions (15 min) Start time:

8. What are the attributes and methods of Circle, and what is their visibility?

9. Based on Model 1 and Model 2, what is typically public and what is typically private?

10. How would you declare a variable named unit that is a Circle object? How would you
instantiate a circle with a radius of 1.0 and assign it to unit?

11. Write the code (inside Circle.java) that declares the radius attribute.

12. Write the code for getRadius. (Don’t worry about Javadoc comments for this activity.)



13. Write the code for setRadius. Note there are two variables named radius: the parameter
of setRadius, and this.radius for the object itself. Before you set the radius, first check if the
parameter is negative, and if it is, set this.radius to zero instead.

14. Write the complete code for area and circumference. The area of a circle is πr2, and the
circumference is 2πr. Ideally, each method should be one line of code.

15. Write a main method that creates a Circle object with a radius of 2.0 and displays its area
and circumference on the screen.



Model 3 Variable Scope

As a team, first review and discuss the SwapCircle and SwapDriver classes found at the end of
the questions. Then identify the scope of each variable based on the table below.

Where declared? Where used? Example

static variables
(“class variables”)

declared outside of all
methods (typically at the
start of the class)

anywhere in the class
(or in other classes if
also public)

circleCount in the
SwapCircle class

instance variables
(“attributes”)

declared outside of all
methods (typically after
any static variables)

any non-static method
(or in static methods
when another object
has been created)

radius in the
SwapCircle class

parameters
declared inside the ()’s of
a method signature

anywhere within the
method where they are
declared

radius in the
SwapCircle

constructor

local variables
declared inside a method
(or inside another block
of code, like a for loop)

anywhere within the
method or code block
after they are declared

temp in the swapInts

method

Questions (20 min) Start time:

16. Identify one static variable from the SwapCircle class.

a) What is the name and purpose of the variable?

b) What is the scope of the variable?

c) What is one example of somewhere it cannot be used?

17. Identify one instance variable from the SwapCircle class.

a) What is the name and purpose of the variable?

b) What is the scope of the variable?

c) What is one example of somewhere it cannot be used?



18. Identify an example of where an instance variable is used within a static method.

a) In which method does this occur?

b) Why is the method able to access these instance variables, even though they are private?

c) Explain how this method is not a violation of the rule that instance variables cannot be
accessed inside a static method.

19. Identify one parameter from the SwapCircle class.

a) What is the name and purpose of the variable?

b) What is the scope of the variable?

c) Where can the variable not be used?

20. Identify one local variable from the SwapCircle class.

a) What is the name and purpose of the variable?

b) What is the scope of the variable?

c) Where can the variable not be used?

21. In the space below, predict the output of the SwapDriver program. Why are the results
different when swapping integers and swapping objects?



1 public class SwapCircle {

2

3 private static int circleCount = 0;

4

5 private double radius;

6

7 public SwapCircle(double radius) {

8 circleCount++;

9 if (radius > 0) {

10 this.radius = radius;

11 } else {

12 this.radius = 1;

13 }

14 }

15

16 public static int getCircleCount() {

17 return circleCount;

18 }

19

20 public double getRadius() {

21 return this.radius;

22 }

23

24 public static void swapInts(int x, int y) {

25 System.out.println("\tInside swapInts");

26 System.out.println("\tswapping integers " + x + " and " + y);

27 int temp = x;

28 x = y;

29 y = temp;

30 System.out.println("\tfinished swapping " + x + " and " + y);

31 }

32

33 public static void swapCircles(SwapCircle c1, SwapCircle c2) {

34 System.out.println("\tInside swapCircles");

35 System.out.println("\tswapping circles " + c1 + " and " + c2);

36 double r = c1.radius;

37 c1.radius = c2.radius;

38 c2.radius = r;

39 System.out.println("\tfinished swapping " + c1 + " and " + c2);

40 }

41

42 public String toString() {

43 return String.format("Circle(%.0f)", this.radius);

44 }

45 }



1 public class SwapDriver {

2

3 public static void main(String[] args) {

4

5 // first try swapping integers

6 int a = 7, b = 4;

7 System.out.println("BEFORE swap:");

8 System.out.println("a = " + a);

9 System.out.println("b = " + b);

10 SwapCircle.swapInts(a, b);

11 System.out.println("AFTER swap:");

12 System.out.println("a = " + a);

13 System.out.println("b = " + b);

14 System.out.println();

15

16 // next try swapping SwapCircle radii

17 SwapCircle first, second;

18 first = new SwapCircle(7);

19 second = new SwapCircle(4);

20 System.out.println("BEFORE swap:");

21 System.out.println("first = " + first);

22 System.out.println("second = " + second);

23 SwapCircle.swapCircles(first, second);

24 System.out.println("AFTER swap:");

25 System.out.println("first = " + first);

26 System.out.println("second = " + second);

27 System.out.println();

28

29 System.out.printf("This program created %d circles",

30 SwapCircle.getCircleCount());

31 System.out.println();

32 }

33 }


	The Die Class
	The Circle Class
	Variable Scope

