Activity 8: Recursion

Sometimes when solving a problem, we can compute the solution of a simpler version of the same problem. Eventually we reach the most basic version, for which the answer is trivial.

Content Learning Objectives

After completing this activity, students should be able to:

- Identify the base case and recursive step of the factorial method.
- Trace a recursive method by hand and predict its final output.
- Explain what happens in memory when a method calls itself.

Process Skill Goals

During the activity, students should make progress toward:

- Evaluating mathematical sequences to gain insight on recursion. (Information Processing)

Copyright © 2017 Chris Mayfield, Dee Weikle, and Helen Hu. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Model 1 Factorial

"In mathematics, the factorial of a non-negative integer n, denoted by n !, is the product of all positive integers less than or equal to n. For example, $5!=5 \times 4 \times 3 \times 2 \times 1=120$."

Source: https:/ /en.wikipedia.org/wiki/Factorial

n	$n!$
0	1
1	1
2	2
3	6
4	24
5	120

Questions (25 min)

Start time:

1. Consider how to calculate $4!=24$.
a) Write out all the numbers that need to be multiplied:

$$
4!=
$$

b) Rewrite the expression using 3! instead of $3 \times 2 \times 1$:

$$
4!=
$$

2. Write an expression similar to \#1b showing how each factorial can be calculated in terms of a simpler factorial.
a) $3!=$
b) 2 ! $=$
c) $100!=$
d) $n!=$
3. What is the value of 0 ! based on Model 1? Does it make sense to define 0 ! in terms of a simpler factorial? Why or why not?

If we repeatedly break down a problem into smaller versions of itself, we eventually reach a basic problem that can't be broken down any further. Such a problem, like 0!, is referred to as the base case.
4. Assume you already have a working method named factorial (int n) that returns n ! for any positive integer.
a) Review your answer to \#2c that shows how to compute 100! using a simpler factorial. Convert this expression to Java by using the factorial method instead of the! operator.
b) Now rewrite your answer to \#2d in Java using the variable n.
5. Here is a factorial method that includes output for debugging:

```
public static int factorial(int n) {
    System.out.println("n is " + n);
    if (n == 0) {
        return 1; // base case
    } else {
        System.out.printf("need factorial of %d\n", n - 1);
        int answer = factorial(n - 1);
        System.out.printf("factorial of %d is %d\n", n - 1, answer);
        return n * answer;
    }
}
public static void main(String[] args) {
    System.out.println(factorial(3));
}
```

a) What specific method is invoked on line 7 ?
b) Why is the if statement required on line 3?
6. A method that invokes itself is called recursive. What two steps were necessary to define the factorial method? How were these steps implemented in Java?
7. How many distinct method calls would be made to factorial to compute the factorial of 3 ? Identify the value of the parameter n for each of these separate calls.
8. Here is the complete output from the program in \#5. Identify which distinct method call printed each line. In other words, which lines were printed by factorial (3), which lines were printed by factorial(2), and so on.

```
n is 3
need factorial of 2
n is 2
need factorial of 1
n is 1
need factorial of 0
n is 0
factorial of 0 is 1
factorial of 1 is 1
factorial of 2 is 2
6
```

9. What happens if you try to calculate the factorial of a negative number? How could you prevent this behavior in the factorial method?
10. Trivia question: What is the largest factorial you can compute in Java when using int as the data type? If you don't know, how could you find out?

Model 2 Summation

"In mathematics, summation (capital Greek sigma symbol: Σ) is the addition of a sequence of numbers; the result is their sum or total."

$$
\sum_{i=1}^{100} i=1+2+3+\ldots+100=5050
$$

Source: https://en.wikipedia.org/wiki/Summation

Questions (20 min)

\qquad
11. Consider how to calculate $\sum_{i=1}^{4} i=10$.
a) Write out all the numbers that need to be added:

$$
\sum_{i=1}^{4} i=
$$

b) Show how this sum can be calculated in terms of a smaller summation.

$$
\sum_{i=1}^{4} i=
$$

12. Write an expression similar to \#11b showing how any summation of n integers can be calculated in terms of a smaller summation.

$$
\sum_{i=1}^{n} i=
$$

13. What is the base case of the summation? (Write the complete formula, not just the value.)
14. Implement a recursive method summation that takes a single parameter n and returns the sum $1+2+\ldots+n$. It should only have an if statement and two return statements.
15. Discuss how the factorial method below uses temporary variables. What lines would you have to change to implement the summation method instead?
```
public static int factorial(int n) {
    if (n == 0) {
        return 1; // base case
    }
    int recurse = factorial(n - 1);
    int result = n * recurse;
    return result;
}
```

16. Here is a stack diagram of factorial (3) when invoked from main. Draw a similar diagram for summation (3) as described in the previous question.

17. Why are there no values for recurse and result in the stack diagram for the last call to factorial (when $n=0$)?
18. Looking at the stack diagram, how is it possible that the parameter n can have multiple values in memory at the same time?
