
Linear Regression, Neural Networks, etc.

CS 445 Machine Learning
Nathan Sprague

James Madison University

Neurons
● Neurons communicate using

discrete electrical signals called
“spikes” (or action potentials).
– Spikes travel along axons.
– Reach axon terminals.
– Terminals release

neurotransmitters.
– Postsynaptic neurons respond

by allowing current to flow in
(or out).

– If voltage crosses a threshold
a spike is created

Creative Commons by-nc-sa 3.0

Beginning Psychology (v. 1.0).

http://2012books.lardbucket.org/books/beginning-psychology/

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://2012books.lardbucket.org/books/beginning-psychology/index.html

Multivariate Linear Regression

● Multi-dimensional input vectors:

● Or:
 h(x)

xn

w1

1

w0

h (x1 , x2 , ... , x n)=w0+w1 x1+...+wn x n

h(x)=wT x

x1

wn

...

Linear Regression – The Neural
View

● input = x, desired output = y, weight = w.
● h(x) = wx

● We are given a set of inputs, and a corresponding set of
outputs, and we need to choose w.

● What's going on geometrically?

h(x)

x

w

Lines

x

y

● h(x) = wx is the equation of a line with a y intercept of
0.

● What is the best value of w?
● How do we find it?

Bias Weights

● We need to use the general equation for a line:
h(x) = w1x + w0

● This corresponds to a new neural network with one
additional weight, and an input fixed at 1.

h(x)

x

w1

1

w0

Error Metric

● Sum squared error (y is the desired output):

● The goal is to find a w that minimizes E. How?

ErrorE=∑
e∈E

1
2 (ye−h(xe))

2

Gradient Descent

http://en.wikipedia.org/wiki/File:Glacier_park1.jpg

Attribution-Share Alike 3.0 Unported

http://creativecommons.org/licenses/by-sa/3.0/deed.en

Gradient Descent
● One possible approach (maximization):

1)take the derivative of the function: f'(w)
2)guess a value of w :
3)move a little bit according to the derivative:

4)goto 3, repeat.

ŵ←ŵ−η f ' (ŵ)
ŵ

ŵ

Partial Derivatives
● Derivative of a function of multiple variables, with all

but the variable of interest held constant.
f x , y =x2xy2

f x  x , y=2xy2

∂ f x , y 
∂ x

=2xy2

f y  x , y =2xy

∂ f x , y 
∂ y

=2xy

OROR

Gradient
● The gradient is just the generalization of the derivative

to multiple dimensions.

● Gradient descent update:

∇ f w=[
∂ f w

∂w1

∂ f w

∂w2

⋮
∂ f w

∂ w
n

]
ŵ← ŵ−η∇ f (ŵ)

Gradient Descent for MVLR

● Error for the multi-dimensional case:

● The new update rule:

● Vector version:

∂ ErrorE (w)
∂ wi

=∑
e∈E

(ye−wT xe)(−x e , i)

=−∑
e∈E

(ye−wT xe) xe , i

Error E (w)=∑
e∈E

1
2
(ye−wT xe)

2

wi←wi+η∑
e∈E

(ye−wT xe) xe , i

w←w+η∑
e∈E

(ye−wT xe) xe

Analytical Solution

● Where X is a matrix with one input per row, y the
vector of target values.

w=(X T X)−1 XT y

Notice that we get Polynomial Regression
for Free

y=w1 x2+w2 x+w0

Batch Gradient Descent

● Batch gradient descent involves updating based on the full
summed gradient value:

Or more generally:

● With a huge data set this may involve a large amount
computation before any updates can be performed.

● If we are trying to do the calculation in parallel (say on a GPU)
it may take a huge amount of memory.

Stochastic Gradient Descent (SGD)

● Update the weights immediately after the gradient is calculated
for each data point:

For K epochs:
● Shuffle the data in E
● For e in E:

● In practice this often converges in fewer iterations.

Mini-Batch Gradient Descent

● Select a fixed-sized subset of data points and perform an update
based on the summed gradient for that subset:

For K epochs:
● Repeat |E| / |B| times:

– Randomly draw B from E

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

