Linear Regression, Neural Networks, etc.

CS 445 Machine Learning
Nathan Sprague
James Madison University

Neurons

- Neurons communicate using discrete electrical signals called "spikes" (or action potentials).
 - Spikes travel along axons.
 - Reach axon terminals.
 - Terminals release neurotransmitters.
 - Postsynaptic neurons respond by allowing current to flow in (or out).
 - If voltage crosses a threshold
 a spike is created

Beginning Psychology (v. 1.0).

http://2012books.lardbucket.org/books/beginning-psychology/

Creative Commons by-nc-sa 3.0

Multivariate Linear Regression

Multi-dimensional input vectors:

$$h(x_1, x_2, ..., x_n) = w_0 + w_1 x_1 + ... + w_n x_n$$

• Or: $h(x) = w^T x$

Linear Regression – The Neural View

• input = x, desired output = y, weight = w.

•
$$h(x) = wx$$

- We are given a set of inputs, and a corresponding set of outputs, and we need to choose w.
- What's going on geometrically?

Lines

• h(x) = wx is the equation of a line with a y intercept of 0.

What is the best value of w?

• How do we find it?

Bias Weights

We need to use the general equation for a line:

$$h(x) = w_1 x + w_0$$

• This corresponds to a new neural network with one additional weight, and an input fixed at 1.

Error Metric

• Sum squared error (y is the desired output):

$$Error_{E} = \sum_{e \in E} \frac{1}{2} (y_{e} - h(\boldsymbol{x}_{e}))^{2}$$

• The goal is to find a w that minimizes E. How?

Gradient Descent

http://en.wikipedia.org/wiki/File:Glacier_park1.jpg

Attribution-Share Alike 3.0 Unported

Gradient Descent

- One possible approach (maximization):
 - 1) take the derivative of the function: f'(w)
 - 2) guess a value of w : \hat{w}
 - 3) move \hat{w} a little bit according to the derivative:

$$\hat{w} \leftarrow \hat{w} - \eta f'(\hat{w})$$

4)goto 3, repeat.

Partial Derivatives

 Derivative of a function of multiple variables, with all but the variable of interest held constant.

Gradient

• The gradient is just the generalization of the derivative to multiple dimensions.

$$\nabla f(\mathbf{w}) = \begin{bmatrix} \frac{\partial f(\mathbf{w})}{\partial w_1} \\ \frac{\partial f(\mathbf{w})}{\partial w_2} \\ \vdots \\ \frac{\partial f(\mathbf{w})}{\partial w_n} \end{bmatrix}$$

Gradient descent update:

$$\hat{\mathbf{w}} \leftarrow \hat{\mathbf{w}} - \eta \nabla f(\hat{\mathbf{w}})$$

Gradient Descent for MVLR

• Error for the multi-dimensional case:

$$Error_{E}(\mathbf{w}) = \sum_{e \in E} \frac{1}{2} (y_{e} - \mathbf{w}^{T} \mathbf{x}_{e})^{2}$$

$$\frac{\partial Error_{E}(\mathbf{w})}{\partial w_{i}} = \sum_{e \in E} (y_{e} - \mathbf{w}^{T} \mathbf{x}_{e}) (-x_{e,i})$$

$$= -\sum_{e \in E} (y_{e} - \mathbf{w}^{T} \mathbf{x}_{e}) x_{e,i}$$

• The new update rule: $w_i \leftarrow w_i + \eta \sum_{e \in E} (y_e - \mathbf{w}^T \mathbf{x}_e) x_{e,i}$

• Vector version:
$$w \leftarrow w + \eta \sum_{e \in E} (y_e - w^T x_e) x_e$$

Analytical Solution

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

• Where X is a matrix with one input per row, y the vector of target values.

Notice that we get Polynomial Regression for Free

$$y = w_1 x^2 + w_2 x + w_0$$

Batch Gradient Descent

 Batch gradient descent involves updating based on the full summed gradient value:

$$\mathbf{w} \leftarrow \mathbf{w} + \eta \sum_{e \in E} (y_e - \mathbf{w}^T \mathbf{x}_e) \mathbf{x}_e$$

Or more generally:

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \sum_{e \in E} \nabla_w f(\mathbf{x}_e)$$

- With a huge data set this may involve a large amount computation before any updates can be performed.
- If we are trying to do the calculation in parallel (say on a GPU) it may take a huge amount of memory.

Stochastic Gradient Descent (SGD)

 Update the weights immediately after the gradient is calculated for each data point:

For K epochs:

- Shuffle the data in E
- For e in E:

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_w f(\mathbf{x}_e)$$

In practice this often converges in fewer iterations.

Mini-Batch Gradient Descent

 Select a fixed-sized subset of data points and perform an update based on the summed gradient for that subset:

For K epochs:

- Repeat |E| / |B| times:
 - Randomly draw B from E

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \sum_{e \in B} \nabla_w f(\mathbf{x}_e)$$