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Neurons
● Neurons communicate using 

discrete electrical signals called 
“spikes” (or action potentials).
– Spikes travel along axons.
– Reach axon terminals.
– Terminals release 

neurotransmitters.
– Postsynaptic neurons respond 

by allowing current to flow in 
(or out).

– If voltage crosses a threshold 
a spike is created
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Multivariate Linear Regression

● Multi-dimensional input vectors:

● Or:
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Linear Regression – The Neural 
View

● input = x, desired output = y, weight = w.
● h(x) = wx

● We are given a set of inputs, and a corresponding set of 
outputs, and we need to choose w.

● What's going on geometrically?  
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Lines

x
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● h(x) = wx is the equation of a line with a y intercept of 
0. 

● What is the best value of w? 
● How do we find it? 



Bias Weights

● We need to use the general equation for a line: 
h(x) = w1x + w0

● This corresponds to a new neural network with one 
additional weight, and an input fixed at 1.
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Error Metric

● Sum squared error (y is the desired output): 

● The goal is to find a w that minimizes E.  How? 

ErrorE=∑
e∈E
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Gradient Descent
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Gradient Descent
● One possible approach (maximization):

1)take the derivative of the function:  f'(w)
2)guess a value of w : 
3)move    a little bit according to the derivative:

4)goto 3, repeat.

ŵ←ŵ−η f ' (ŵ)
ŵ

ŵ



Partial Derivatives
● Derivative of a function of multiple variables, with all 

but the variable of interest held constant.
f x , y =x2xy2

f x  x , y=2xy2

∂ f x , y 
∂ x

=2xy2

f y  x , y =2xy

∂ f x , y 
∂ y

=2xy

OROR



Gradient
● The gradient is just the generalization of the derivative 

to multiple dimensions.

● Gradient descent update:

∇ f w=[
∂ f w
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Gradient Descent for MVLR 

● Error for the multi-dimensional case:

● The new update rule:

● Vector version: 

∂ ErrorE (w)
∂ wi

=∑
e∈E

(ye−wT xe)(−x e , i)

=−∑
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(ye−wT xe) xe , i

Error E (w)=∑
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Analytical Solution

● Where X is a matrix with one input per row, y the 
vector of target values.

w=(X T X )−1 XT y



Notice that we get Polynomial Regression 
for Free

y=w1 x2+w2 x+w0



Batch Gradient Descent

● Batch gradient descent involves updating based on the full 
summed gradient value:

Or more generally:

● With a huge data set this may involve a large amount 
computation before any updates can be performed.

● If we are trying to do the calculation in parallel (say on a GPU) 
it may take a huge amount of memory.



Stochastic Gradient Descent (SGD)

● Update the weights immediately after the gradient is calculated 
for each data point:

For K epochs:
● Shuffle the data in E
● For e in E:

● In practice this often converges in fewer iterations. 



Mini-Batch Gradient Descent

● Select a fixed-sized subset of data points and perform an update 
based on the summed gradient for that subset:

For K epochs:
● Repeat |E| / |B| times:

– Randomly draw B from E
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