
Decision Tree Construction

In this activity, we will explore the CART decision tree construction algorithm for classification. This 
approach works by first grouping all the data into a single root node. If all the examples in the node 
are from a single class, we are done. Otherwise, we iterate through each feature to see how well that 
feature splits/partitions the data by class, and then select the feature providing the best split (we will 
formalize the best split in the next activity). Child nodes are created using the best split, and the 
algorithm is applied recursively to those nodes. There is no guarantee that this greedy strategy will 
result in an optimal tree, but in practice, it works well.

1. Information Entropy
The greedy part of this algorithm is se­
lecting the “best” split for partitioning 
the data into child nodes that are as ho­
mogeneous as possible. One measure of 
homogeneity is entropy. Entropy is de­
fined as follows:

−
𝑐

∑
𝑖=1

(𝑝𝑖(𝑡) log2 (𝑝𝑖(𝑡)))

Where 𝑝𝑖(𝑡) is the relative frequency of 
class 𝑖 in node 𝑡. The figure on the left 
shows how entropy changes based on a 
binary classification problem of + and −.

• For a binary classifier, calculate the entropy of the contents of a node where 13 examples are 
of the class “+” and 20 examples are of class “−”.

2. Selecting Splits 
The goal of a partition/split is to maximize the increase in homogeneity between the parent node 
and its children. This is known as gain, or in the case of entropy, information gain.

𝐺𝑎𝑖𝑛(𝑆𝑝𝑙𝑖𝑡) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃 𝑎𝑟𝑒𝑛𝑡) − (
𝑚𝑙𝑒𝑓𝑡

𝑚
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐿𝑒𝑓𝑡) +

𝑚𝑟𝑖𝑔ℎ𝑡

𝑚
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑅𝑖𝑔ℎ𝑡)) (1)

Where 𝑚𝑙𝑒𝑓𝑡/𝑟𝑖𝑔ℎ𝑡 is the number of training examples within a child node and 𝑚 is the is the 
number of examples in the parent node that is being split. Each entropy calculation is weighted
by the number of examples it contains (and the weights sum to 1). This gain is sometimes denoted 
Δ𝑖𝑛𝑓𝑜.
Here is a small training set:

1



 Home Owner  Martial Status  Annual Income  Defaulted Borrower 
 Yes  Single  120,000  No 
 No  Married  100,000  No 
 Yes  Single  70,000  No 
 No  Single  150,000  Yes 
 Yes  Divorced  85,000  No 
 No  Married  80,000  Yes 
 No  Single  75,000  Yes 

(a) Calculate the entropy of the full dataset.

(b) Calculate the gain associated with splitting on the Home Owner attribute.

(c) Calculate the gain associated with splitting on the Marital Status attribute. Consider two 
possible splits: single vs. married/divorced and single/married vs. divorced.

(d) Calculate the gain associated with splitting on Annual Income The table below is provided 
to help you keep track of the possible split points for the Annual Income attribute.

 Class  No  Yes  Yes  No  No  No  Yes
 Annual Income (In thousands)

 70  75  80  85  100  120  150
 Split Points  72.5  77.5  82.5  92.5  110  135

≤  > ≤  > ≤  > ≤  > ≤  > ≤  >
 Yes  0  3  1  2
 No  1  3  1  3

 Weighted Entropy  .857

(e) What is the best overall split point and what is the information gain associated with that 
split?
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3. Run Time Analysis of Tree Construction
(a) Consider the run time cost of evaluating the splits for a single continuous feature like annual 

income. For a dataset of size 𝑛, how many operations does it take? You can consider the 
cost of computing the entropy for a single split point as 𝑂(1).

(b) Given a dataset with 𝑑 attributes, what is the cost of a determining a single split, considering 
all possible attributes?

(c) What is the overall cost of the greedy decision tree construction algorithm, assuming a rea­
sonably balanced tree?

(d) What is the worst-case cost of classifying a point using a balanced decision tree?

4. Example Data and Applicability of Decision Trees 
Considering the case that only binary splits are possible (each node can have at most two children), 
consider how decision trees divide up the feature space. Below are three sets of training data with 
2 features. Make some general comments on how decision trees might perform given this input 
data.

 a  b  c
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   −    (     13    33         log   2        13    33    +     20    33         log   2        20    33    )   ≈  .   97  
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     4  7   ×  1  +    3  7   ×  .   918   ≈  .   965  


   .   985   −  .   965   =  .   020  
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