Multi-Layer Neural Networks
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4x1
column X

vector

Hidden activation: h(x'WM)
Output activation: ¢ (h(xTW(l))W(2)>

(h is the non-linearity at the hidden layer. O is the non-linearity at the

output. Applied element-wise.)



3x1

column X

vector

Hidden activation: h(x'W®)
Output activation: o (h(xTW(l))W(Q))

(h is the non-linearity at the hidden layer. O is the non-linearity at the

output. Applied element-wise.)



4x1

column X

vector

Hidden activation: h(x"W®) 4+ b))
Output activation: o (h(xTW(l) +bMYW® 4 b(2))

(h is the non-linearity at the hidden layer. O is the non-linearity at the

output. Applied element-wise.)



What if we have a multi-class problem?

Softmax for K classes:

a;

€

Zf:l et

O'(a)z' =

The (non-squashed) activations a. are called logits.

Cross-entropy loss function. The target vector y is “one-hot
encoded”.

K
Loss = — 3" yslog(o(a),
1=1



* Define a Loss Function:

L(w,D) = — Z Zyi,jlog(a(a)j)

(%i,y:)€D =1
* Find the gradient of the error function with respect to
the weights:

VwL(w, D)

* Take small steps in the direction of the gradient:

w — W — aVy L(w, D)



* Efficient algorithm for implementing gradient
descent in neural networks.

* Forward Pass: Activation =

* Backward Pass:




Invented:

Linnainmaa, S. (1970). The representation of the cumulative rounding error of an algorithm as a Taylor
expansion of the local rounding errors. Master’s thesis, Univ. Helsinki.

First applied to neural networks:

P. J. Werbos. (1982) Applications of advances in nonlinear sensitivity analysis. In R. Drenick, F. Kozin,
(eds): System Modeling and Optimization: Proc. IFIP, Springer

Shown to create useful representations in the hidden
layer

DE Rumelhart, GE Hinton, RJ Williams (1985). Learning Internal Representations by Error Propagation.
TR No. ICS-8506, California Univ San Diego La Jolla Inst for Cognitive Science.

Detailed history:

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117.

Modern ML libraries like Py Torch and TensorFlow
automate the implementation of the backward pass.




* How best to add capacity?

~ More units in a single hidden layer?

* Three layer networks are universal approximators: with
enough units any continuous function can be approximated

* Adding layers makes the learning problem harder...



Error Signal




There are tasks that require exponentially many
hidden units for a three-layer architecture, but
only polynomially many with more hidden layers

The best hand-coded image processing algorithms
have deep structure

The brain has a deep architecture

* MORE SOON.
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