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Review

Linear regression

Finding the weights to assign to a polynomial so 

that the resulting line minimizes the "loss".

ℎ(𝑥1, 𝑥2,… 𝑥𝑛) =  𝑤0 +  𝑤1𝑥1+ . . +𝑤𝑛𝑥𝑛

ℎ 𝑥 =  𝑤𝑇𝑥

This function h(x) (hypothesis function) makes a real valued prediction (regression).

Linear Regression Loss  𝐿 𝑤 =
1
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Approach for Linear Regression

Linear Regression Loss  𝐿 𝑤 =
1
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Optimize (find the min) of 

the loss function using the 

derivatives:
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Linear Regression Algorithm

1. Make predictions using current w and 

compute loss

2. Compute derivative and update w's

3. When loss change between this and 

the last iteration is small, STOP.  

Otherwise, go back to 1.



Map Function to Values Between 0 and 1

Sigmoid (Logistic) (z) = σ 𝑧 =
1

1+ 𝑒−𝑧 =
1

1+ 𝑒−𝑤𝑡𝑥

Note:   When 𝑤𝑡𝑥 + 𝑏 > 0, predict class 1 
(that is what the odds tell us).

The plot shows 𝜎 𝑧 > 0.5 only when 𝑧 ≥ 0.

Question:   How to learn the best w values 
so that the odds (posterior probabilities) 
reflect any training data x.
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Logistic Regression Mechanics/Math

Citation to Tobias Roeschi 



Logistic Regression Mechanics/Math

Citation to Tobias Roeschi 



How about using this for Classification?

For binary classification, let’s define the odds as 
𝑃 𝑦=1 𝑥)

𝑃 𝑦=0 𝑥)
 

When this is greater than 1, we predict class 1, otherwise we predict class 0.

Idea:   Use linear regression model to compute the odds. 

Note that  𝑃 𝑦 = 0 𝑥 + 𝑃 𝑦 = 1 𝑥)  = 1 Therefore: 𝑃 𝑦 = 0 𝑥 = 1 − 𝑃(𝑦 = 1|𝑥)

● P y = 1 x, w =  σ 𝑤𝑡𝑥 + 𝑏 =
1

1+𝑒−(𝑤𝑇𝑥+𝑏)
 

● P y = 0 x, w = 1 − σ 𝑤𝑡𝑥 + 𝑏



Maximum Likelihood

𝜃𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑃 𝐷 𝜃) ℒ 𝜃 = P D 𝜃) =  ෑ

𝑥𝑖∈𝐷

𝑃 𝑥𝑖 𝜃)

Said differently, what is the likelihood of the data GIVEN the parameters of the model.

For example, take a bias coin that has 𝜃 = 0.9 to come up heads.  What is the 
likelihood of seeing this data:  [ Heads, Tails Heads]?



Maximum Likelihood

𝜃𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑃 𝐷 𝜃) ℒ 𝜃 = P D 𝜃) =  ෑ

𝑥𝑖∈𝐷

𝑃 𝑥𝑖 𝜃)

Said differently, what is the likelihood of the data GIVEN the parameters of the model.

For example, take a bias coin that has 𝜃 = 0.9 to come up heads.  What is the 
likelihood of seeing this data:  [ Heads, Tails Heads]?

What is the 𝜃 that yields the maximum likelihood? 



Maximum Likelihood

𝜃𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑃 𝐷 𝜃) ℒ 𝜃 = P D 𝜃) =  ෑ

𝑥𝑖∈𝐷

𝑃 𝑥𝑖 𝜃)

Said differently, what is the likelihood of the data GIVEN the parameters of the model.

Notice no priors.



Introducing Logistic Regression

World's WORST algorithm name (it is classification, not regression)

Likelihood function: ℒ 𝑤 = ς𝑖=1
𝑛 ቊ

𝑃 𝑦 = 1 𝒙𝒊, 𝒘 , 𝑖𝑓 𝑦𝑖 = 1

𝑃 𝑦 = 0 𝒙𝒊, 𝒘  𝑖𝑓 𝑦𝑖 = 0

Nicer: ℒ 𝑤 = ς𝑖=1
𝑛 𝑃(𝑦 = 1|𝒙𝒊, 𝒘)𝑦𝑖  ×  𝑃(𝑦 = 0|𝑥𝑖 , 𝑤)1−𝑦𝑖

Finally, use logs for numeric stability:

ℒℒ 𝑤 =  σ𝑖=1
𝑛 𝑦𝑖 log 𝑃(𝑦 = 1| 𝒙𝒊, 𝒘) + 1 − 𝑦𝑖 log 𝑃 𝑦 = 0 𝒙𝒊, 𝒘)

Maximizing the log likelihood is the same as minimizing the negative log likelihood:

 −ℒℒ 𝑤 = − σ𝑖=1
𝑛 𝑦𝑖 log 𝑃(𝑦 = 1| 𝒙𝒊, 𝒘) + 1 − 𝑦𝑖 log 𝑃 𝑦 = 0 𝒙𝒊, 𝒘)



Cross Entropy

This log function is usually called cross-entropy.  

 −ℒℒ 𝑤 = − σ𝑖=1
𝑛 𝑦𝑖 log(𝜎 𝑤𝑡𝑥 + 𝑏 ) + 1 − 𝑦𝑖 log(1 − 𝜎 𝑤𝑡𝑥 + 𝑏 )

Quiz: What is the cross-entry loss when: 𝜎 𝑤𝑡𝑥 + 𝑏  = 1 and

● 𝑦𝑖 = 0

● 𝑦𝑖 = 1

Recall that log(1) = 0 and log(0) = −∞



Could we just use SSE and Make Life Easy(Easier)

Zero and one are just numbers, so, why not use the SSE we used for linear regression.

𝐸 𝑤 = ෍

𝑖=1

𝑛

𝑦𝑖 − 𝜎 𝑤𝑡𝑥 + 𝑏
2

(MSE is just mean squared error.  Plot from Prof Sprague)



Minimize Cross-Entropy Loss

1. No closed form solution.

2. Could use gradient descent, but specialized solvers exists the use second derivatives 

(Hessian) to speed things along.

3. Good news! Logistic regression is guaranteed to have a single global minima.

Some nice animations of this are available here: 

https://towardsdatascience.com/animations-of-logistic-regression-with-python-

31f8c9cb420



Summary
Pros:

Cons:

● Simple and explainable: individual coefficients indicate the relationship between the attribute and 

the class.

● Unique global minima means that we can be confident when algorithm converges

● Prediction is fast.

● Provides a real-valued score function that may be interpreted as a probability

● Key machinery for multi-layer neural networks

● Linear decision boundary

● Subject to overfitting in high-dimensional settings
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