Support Vector Machines

Some material on these is slides borrowed from Andrew Moore's
machine learning tutorials located at:

http://www.cs.cmu.edu/~awm/tutorials/



Where Should We Draw the Line?




Margins

* Margin — The distance from the decision boundary to

the closest point.
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Support Vector Machine

* Find the boundary with the maximum margin.

* The points that determine the boundary are the

support vectors.

Support Vectors




Finding the Boundary...

* The equation for a plane:
w-x+b=0

* Suppose we have two classes, -1 and 1, we can use

this equation for classification: c¢(x)=sign(w-x+b)



Visualizing the Boundary...
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* We can get our perceptron to do this.



Creating A Margin

* Input-output pairs: (x, t), t=-1orl

* We don't just want our samples to be on the right
side, we want them to be some distance from the

boundary
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w-x.+b<0 for t=-1
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wx.+b<—-1 for t=-1

We want this >

Which is the same as this —» ti(w-xi—l—b)z-l—l



Two Boundaries...

w-x+b=1

w-x+b=—1




Minimization

* The distance from a point, x, to the boundary can be

expressed as: w-x+D|

* This can be maximized by minimizing ||w||.

1 2
* Minimize EHWH subject to tl.(w°xi-|-b)2-|-1 for all i.
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Determines the size of the margin Enforces correct classification



Quadratic Programming

1 2
Minimize EHWH subject to ti(w-xl.-l-b)z-l-l , for all i.

Minimizing a quadratic function subject to linear
constraints... So What?

This is a (convex) quadratic programming problem.

What does that mean?
— No local minima.

— Good solvers exist.



Lagrange Multipliers

2
* Minimize %HWH subject to t,(w-x,+b)>+1 for all i.

C Now, apply some mathematical hocus pocus....



Dual Formulation

* Maximize:

L Z(X - _Zzulu]tzt]

subject to o >0 and Z o.1.=0

* Once this is done we can get our weights according to:

W=D &.L.X,
l



Two Things to Notice

W=D oL, X,
l

* Most of the & will be 0. Those that are non-zero

l

correspond to support vectors.

L, Z(x — —ZZO(lO(]tltj X, x)

* The inputs only show up in the form of dot products.



What About This Case?
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A 1-D Classification Problem

* Where will an SVM put the decision boundary?
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http://www.cs.cmu.edu/~awm/tutorials/



1-D Problem Continued

* No problem.

* Equidistant from the two classes.

http://www.cs.cmu.edu/~awm/tutorials/



The Non-Separable Case

* Now we have a problem...

http://www.cs.cmu.edu/~awm/tutorials/



Increase the Dimensionality

* Use our old data

points x to create a
1

new set of data points

/

http://www.cs.cmu.edu/~awm/tutorials/



Increase the Dimensionality

* Now the data is

separable.

http://www.cs.cmu.edu/~awm/tutorials/




The Blessing of Dimensionality (7)

* This works in general.

* When you increase the dimensionality of your data,
you increase the chance that it will be linearly

separable.

* In an N-1 dimensional space you should always be able

to separate N data points. (Unless you are unlucky.)



Let's do it!

* Define a function ¢(x) that maps our low

dimensional data into a very high dimensional space.

* Now we can just rewrite our optimization to use these

high dimensional vectors:

L, ZO( - _Zzuzujtltj cl)(xj)]

subject to 0=, <C and Z . t.=0

* What's the problem?



The Kernel Trick

It turns out we can often find a kernel function K such
that:  K(x,x)=d(x)b(x)

i J
In fact, almost any kernel function corresponds to a

dot product in some space.

Now we have:
L, ZO( — —ZZala]tltJK X;,X;)
subject to <o <C and Z . t.=0

Support vector machines are also called kernel

machines.



The Kernel Trick

* We get to perform classification in very high

dimensional spaces for almost no additional cost.

* Some Kernels:

- Polynomial: K(x,, xj)Z(xi-xj—I—l)q

2

- Radial Basis Function: K(xi,xj):exp

~ Sigmoidal: K (x, xj)ztanh(in-xj-l—l)



Nice Things about SVM's

Good generalization because of margin maximization.

Not many parameters to pick.
— No learning rate, no hidden layer size.
— Just C, and possibly some parameters for kernel function.

— You also have to pick a kernel function.
No problems with local minima.

What about SVM regression? It's possible, but we

won't talk about it.
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