Support Vector Machines

Some material on these is slides borrowed from Andrew Moore's
machine learning tutorials located at:

http://www.cs.cmu.edu/~awm/tutorials/

Where Should We Draw the Line?

Margins

* Margin — The distance from the decision boundary to

the closest point.

Closest PointX.>
O O

A @

<« Margin

~

Support Vector Machine

* Find the boundary with the maximum margin.

* The points that determine the boundary are the

support vectors.

Support Vectors

Finding the Boundary...

* The equation for a plane:
w-x+b=0

* Suppose we have two classes, -1 and 1, we can use

this equation for classification: c¢(x)=sign(w-x+b)

Visualizing the Boundary...

w-x+b=0
w-x+b>0 .
' ®e
o o . Wxt+b<(0
® |

* We can get our perceptron to do this.

Creating A Margin

* Input-output pairs: (x, t), t=-1orl

* We don't just want our samples to be on the right
side, we want them to be some distance from the

boundary

‘X. > =
Instead of this »wxl+b 0 fOr tz +1

w-x.+b<0 for t=-1

w-x.+bz+1 for t=+1
wx.+b<—-1 for t=-1

We want this >

Which is the same as this —» ti(w-xi—l—b)z-l—l

Two Boundaries...

w-x+b=1

w-x+b=—1

Minimization

* The distance from a point, x, to the boundary can be

expressed as: w-x+D|

* This can be maximized by minimizing ||w||.

1 2
* Minimize EHWH subject to tl.(w°xi-|-b)2-|-1 for all i.
Y

\\

Determines the size of the margin Enforces correct classification

Quadratic Programming

1 2
Minimize EHWH subject to ti(w-xl.-l-b)z-l-l , for all i.

Minimizing a quadratic function subject to linear
constraints... So What?

This is a (convex) quadratic programming problem.

What does that mean?
— No local minima.

— Good solvers exist.

Lagrange Multipliers

2
* Minimize %HWH subject to t,(w-x,+b)>+1 for all i.

C Now, apply some mathematical hocus pocus....

Dual Formulation

* Maximize:

L Z(X - _Zzulu]tzt]

subject to o >0 and Z o.1.=0

* Once this is done we can get our weights according to:

W=D &.L.X,
l

Two Things to Notice

W=D oL, X,
l

* Most of the & will be 0. Those that are non-zero

l

correspond to support vectors.

L, Z(x — —ZZO(lO(]tltj X, x)

* The inputs only show up in the form of dot products.

What About This Case?

B
® [
@ ..
.O.
@ m N
@ [
[
m ¥ " n
m B

A 1-D Classification Problem

* Where will an SVM put the decision boundary?

e e Ol. @) (O] (OIN6) @)

x=|0

http://www.cs.cmu.edu/~awm/tutorials/

1-D Problem Continued

* No problem.

* Equidistant from the two classes.

http://www.cs.cmu.edu/~awm/tutorials/

The Non-Separable Case

* Now we have a problem...

http://www.cs.cmu.edu/~awm/tutorials/

Increase the Dimensionality

* Use our old data

points x to create a
1

new set of data points

/

http://www.cs.cmu.edu/~awm/tutorials/

Increase the Dimensionality

* Now the data is

separable.

http://www.cs.cmu.edu/~awm/tutorials/

The Blessing of Dimensionality (7)

* This works in general.

* When you increase the dimensionality of your data,
you increase the chance that it will be linearly

separable.

* In an N-1 dimensional space you should always be able

to separate N data points. (Unless you are unlucky.)

Let's do it!

* Define a function ¢(x) that maps our low

dimensional data into a very high dimensional space.

* Now we can just rewrite our optimization to use these

high dimensional vectors:

L, ZO(- _Zzuzujtltj cl)(xj)]

subject to 0=, <C and Z . t.=0

* What's the problem?

The Kernel Trick

It turns out we can often find a kernel function K such
that: K(x,x)=d(x)b(x)

i J
In fact, almost any kernel function corresponds to a

dot product in some space.

Now we have:
L, ZO(— —ZZala]tltJK X;,X;)
subject to <o <C and Z . t.=0

Support vector machines are also called kernel

machines.

The Kernel Trick

* We get to perform classification in very high

dimensional spaces for almost no additional cost.

* Some Kernels:

- Polynomial: K(x,, xj)Z(xi-xj—I—l)q

2

- Radial Basis Function: K(xi,xj):exp

~ Sigmoidal: K (x, xj)ztanh(in-xj-l—l)

Nice Things about SVM's

Good generalization because of margin maximization.

Not many parameters to pick.
— No learning rate, no hidden layer size.
— Just C, and possibly some parameters for kernel function.

— You also have to pick a kernel function.
No problems with local minima.

What about SVM regression? It's possible, but we

won't talk about it.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

