
Lowest-Cost-First Search (Dijkstra's
Algorithm)

(Some material from Artificial Intelligence: Foundations of Computational Agents 2nd ed., Poole and Mackworth, 2017.)

Path Nodes

● For our purposes:
– A “Node” corresponds to a state in the

problem. There may be infinitely many
Nodes.

– A “PathNode” is a data type that represents a
partial solution and the associated cost.

● (This is not standard terminology. Our textbook does not
discuss PathNodes; in Russel & Norvig, they are just called
“Nodes”.)

Depth First Search (With PathNodes!)
 procedure DepthFirstSearch(G,S,goal)
 Inputs
 G: graph with nodes N and arcs A
 s: start node
 goal: Boolean function of states
 cost: The cost function for arcs
 Output
 path from a member of S to a node for which goal is true
 or if there are no solution paths ⊥
 Local
 Frontier: a stack of PathNodes
 Explored: set of nodes that have been expanded

 Frontier ← Empty Stack
 Frontier.push(PathNode(s, None, 0))
 Explored ← {}
 while (Frontier is not empty)
 Pop pNode from Frontier
 Explored ← Explored {∪ pNode.state}

 if (goal(pNode.state)) then
 return The path represented by pNode
 For all { n⟨

k
,n⟩ : n⟨

k
,n A n Frontier n Explored}⟩ ∈

 Frontier.push(PathNode(n, pNode, cost(n⟨
k
,n⟩)

 return ⊥

∉∧∧ ∉

Lowest-Cost-First Search (Dijkstra's
Algorithm)

 procedure LowestCostSearch(G,S,goal)
 Inputs
 G: graph with nodes N and arcs A
 s: start node
 goal: Boolean function of states
 cost: The cost function for arcs
 Output
 path from a member of S to a node for which goal is true
 or if there are no solution paths ⊥
 Local
 Frontier: a Priority Queue of PathNodes ordered by cost
 Explored: set of nodes that have been expanded

 Frontier ← Empty Stack
 Frontier.enqueue(PathNode(s, None, 0))
 Explored ← {}
 while (Frontier is not empty)
 Pop pNode from Frontier
 Explored ← Explored {pNode.state}∪

 if (goal(pNode.state)) then
 return The path represented by pNode
 For all { n⟨

k
,n : n⟩ ⟨

k
,n A n Frontier n Explored}⟩ ∈

 Frontier.enqueue(PathNode(n, pNode, cost(n⟨
k
,n)⟩

 return ⊥

∉∧∧ ∉

Lowest-Cost-First Search (Dijkstra's
Algorithm)

Missing detail:
if s is already in
the frontier,
then it's
PathNode
should be
replaced if the
new node
would have a
lower path
cost.

 procedure LowestCostSearch(G,S,goal)
 Inputs
 G: graph with nodes N and arcs A
 s: start node
 goal: Boolean function of states
 cost: The cost function for arcs
 Output
 path from a member of S to a node for which goal is true
 or if there are no solution paths ⊥
 Local
 Frontier: a Priority Queue of PathNodes ordered by cost
 Explored: set of nodes that have been expanded

 Frontier ← Empty Stack
 Frontier.enqueue(PathNode(s, None, 0))
 Explored ← {}
 while (Frontier is not empty)
 Pop pNode from Frontier
 Explored ← Explored {pNode.state}∪

 if (goal(pNode.state)) then
 return The path represented by pNode
 For all { n⟨

k
,n : n⟩ ⟨

k
,n A n Frontier n Explored}⟩ ∈

 Frontier.enqueue(PathNode(n, pNode, cost(n⟨
k
,n)⟩

 return ⊥

∉∧∧ ∉

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

