
Bayesian Networks



Probabilistic Classification
● Goal: 

– Gather Labeled Training Data  
– Build/Learn a Probability Model
– Use the model to infer class labels for unlabeled 

data points
● Example: Spam Filtering...



(Simplistic) Spam Filtering
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(Simplistic) Spam Filtering

viagra discount cs444 count
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Quiz!  Estimate:
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Aside: Maximum Likelihood Learning

● This approach makes sense… What is the justification?
● This is the maximum likelihood estimate:

● Where    represents the parameters we are trying to 
learn. 

ϕ̂=argmax
ϕ∈Φ

P(observed data∣ϕ)

ϕ



Bayes' Optimal Classifier I 
(No Independence Assumptions)

● Assume a multivalued random variable C that can take on 
the values ci for i = 1 to i=K.

● Assume M input attributes Xj for j = 1 to M.

● Learn P(X1, X2, ... ,XM | ci ) for each i.
– Treat this as K different joint PDs.

● Given a set of input values X1=u1, X2=u2, ... ,XM=uM , 
classification is easy (?):

C predict
=argmax

c i

P (C=ci∣X1=u1 ,… , X M=um)



Bayes' Optimal Classifier II 
(No Independence Assumptions)

● Apply Bayes' rule

● Conditioning (applying law of total probability):

C predict
=argmax

c i

P (C=ci∣X1=u1 ,… , X M=um)

C predict
=argmax

c i

P (X1=u1 ,… , X M=um∣C=ci)P (C=ci)

P (X1=u1 ,… , X M=um)

C predict
=argmax

c i

P (X1=u1 ,… , X M=um∣C=ci)P (C=ci)

∑
i=1

K

P (X1=u1 ,… , X M=um∣C=ci)P (C=ci)



An Aside: MAP vs. ML
● This is a maximum a posteriori (MAP) classifier:

● We could also consider a maximum likelihood (ML) 
classifier:

C predict
=argmax

c i

P (C=ci∣X1=u1 ,… , X M=um)

C predict
=argmax

c i

P (X 1=u1 ,… , X M=um∣C=ci)



Bayes' Optimal Classifier III 
(No Independence Assumptions)

● Notice that the denominator is the same for all classes.
● We can simplify this to:

● If you have the true distributions, this is the best choice.

C predict
=argmax

c i

P (X 1=u1,… , X M=um∣C=ci)P (C=ci)

∑
i=1

K

P (X1=u1 ,… , X M=um∣C=ci)P (C=ci)

C predict
=argmax

c i

P X
1
=u

1
, X

2
=u

2
, , X

M
=u

m
∣C=c

i
P C=c

i




Bayes' Optimal Classifier Example

● Email contains “discount”, “CS444”, but not “viagra”. 
 Is it spam?

● Recall:  

C predict
=argmax

c i

P X 1=u1 , X 2=u2 , , X
M
=u

m
∣C=c

i
P C=c

i


P (spam)≈.91

P (¬spam)≈.9

P (¬viagra ,discount , cs444∣spam)=.001

P (¬viagra ,discount , cs444∣¬spam)=.0075



Bayes' Optimal Classifier Example

● Email contains “discount”, “CS444”, but not “viagra”. 
 Is it spam?

● Recall:  

C predict
=argmax

c i

P X 1=u1 , X 2=u2 , , X
M
=u

m
∣C=c

i
P C=c

i


P (spam)≈.91

P (¬spam)≈.09

P (¬viagra , discount , cs444∣spam)=.001

P (¬viagra , discount , cs 444∣spam)P (spam)=.001∗.91=.00091

P (¬viagra , discount , cs 444∣¬spam)P (¬spam)=.0075∗.09=.000675

P (¬viagra ,discount , cs444∣¬spam)=.0075



The Problem...
● Assume we want to use hundreds of words.
● What is the problem here?

C predict
=argmax

c i

P X
1
=u

1
, X

2
=u

2
, , X

M
=u

m
∣C=c

i
P C=c

i




The Problem...
● Assume we want to use hundreds of words.
● What is the problem here?

● If M is largish it is impossible to learn                      
        P(X1, X2, ... ,XM | ci ).

C predict
=argmax

c i

P X
1
=u

1
, X

2
=u

2
, , X

M
=u

m
∣C=c

i
P C=c

i




(Changing Gears) Review
● Joint probability distributions are the key to 

probabilistic inference. 
● If all N variables are completely independent, we can 

represent the full joint distribution using N numbers.
● If every variable depends on every other, we need to 

store            values
● There must be something in-between... 



Conditional Independence
● Saying that 

  “X is conditionally independent of Y given Z” 
  means:

equivalently:

● This graph encodes the same thing:
X

Y

Z



Bayesian Networks
● Directed acyclic graphs that have the following 

interpretation:
Each variable is conditionally independent of all it's 
non-descendants, given the value of it's parents.

E

B

C

A

F

D



Bayesian Networks
● A Bayesian network is a directed acyclic graph that 

represents causal (ideally) relationships between 
random variables. 

EarthquakeBurglary

Alarm

Phone Call

HealthWeather

Mood



Specifying a Bayes' Net
● We need to specify:

– The topology of the network.
– The conditional probabilities.

EarthquakeBurglary

Alarm

Phone Call

P(b)
.001

P(e)
.002

B E  P(a)
T T  .95
T F  .94
F T  .29
F F  .001

A  P(c)
T  .9
F  .05



Bayesian Networks
● We can then reconstruct any entry from the joint 

distribution using:

● In other words, the complete joint probability 
distribution can be reconstructed from the N 
conditional distributions.

● For N  binary valued variables with M parents each
–  2N vs. N * 2M

P  X1 , X 2 , , X N =∏
i=1

N

P X i∣parentsX i



Simple Application: Naive Bayes’ classifier
● Back to spam filtering...
● Assumption: spamminess impacts the probability of different 

words.  Words are conditionally independent of each other 
given spam/non-spam status.

● Consider four boolean random variables:
– Spam (message is spam)
– Viagra (message contains word “viagra”)
– Discount (message contains word “discount”)
– CS444 (message contains word “CS444”)

● What will the graphical model look like?



Belief Network

● Now we need to specify the probabilities
● How does this help with inference...

Viagra

Spam

Discount CS444



Naïve Bayes' Classifier
● Remember: If M is large,  it is impossible to learn       

               P(X1, X2, ... ,XM | ci ).

● The solution (?): assuming that the Xj are 
independent given C:

● The naïve Bayes' classifier: 
P (X1 ,… , X M∣ci)=∏

j=1

M

P (X j∣ci)

C predict=argmax
c

i

P C=c
i
∏

j=1

M

P X
j
∣c

i




Naïve Probability Estimation 
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Naïve Probability Estimation 

viagra discount cs444 count
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viagra discount cs444 count
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SPAM NON­SPAM

P(¬viagra ,discount , cs444∣spam)=
6620
8000

×
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8000

×
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≈.0002

Quiz!  Estimate:



Why is that Naïve? 
● The symptoms probably aren't independent given the 

disease.
● Assuming they are allows us to classify based on 

thousands of attributes.
● This seems to work pretty well in practice.
● Do you see any advantage of this relative to the 

classifiers we saw earlier?



An Note on Implementation
● if M is largish this product can get really small. Too 

small.

● Solution:

● Remember that log(ab) = log(a) + log(b)

C predict=argmax
c

i

P C=c
i
∏

j=1

M

P X
j
∣c

i


C predict
=argmax

c i
( log P (C=ci)+∑

j=1

M

log P (X j∣ci))
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