
EM and Gaussian Mixture Models

CS444

http://www.cs.cmu.edu/~awm/tutorials/

Some material on these is slides borrowed from Andrew Moore's 
machine learning tutorials located at:



Parameterized Probability Distributions

● Parameterized probability distribution: 

●     -  The parameters for the distribution.
● Trivial discrete example:  X is a Boolean random 

variable    indicates the probability that it will be true. 
p (X=TRUE ;θ=.6) =.6
p (X=FALSE ;θ=.6) =.4

θ=.6

θ=.1
p(X=TRUE ;θ=.1) =.1
p (X=FALSE ;θ=.1) =.9



Fitting a Distribution to Data

● Assume we have a set of data points x1 to xN.
● The goal is to find a distribution that fits that data. 

I.e. that could have generated the data. 



Maximum Likelihood Learning

● We will assume that x1 to xN are iid – independent 
and identically distributed.

● So we can write our problem like this (factorization): 

● Taking the log gives us log likelihood:

θ̂=argmax
θ

∏
i=1

N

P (x i ;θ)

θ̂=argmax
θ

∑
i=1

N

log (P (x i∣θ))=argmax
θ

L



Silly Example
● Parameterized coin: Theta – probability of heads:
● d   -- vector of toss data, h number of heads, t number 

of tails.
P (d ;θ) = ∏

i=1

N

P (d i ;θ) = θh(1−θ)t

L (d ;θ) = log (P (d ;θ)) = h logθ+t log (1−θ)

∂L
∂

=
h

−

t
1−

= 0   =
h

ht

Remember: 
d
dx

log (x)=1/ x
Example borrowed from Russel & Norvig



Maximizing Log Likelihood
● Just another instance of function maximization. 
● One approach, set the partial derivatives to 0 and 

solve:

● If you can't solve it, gradient descent, or your favorite 
search algorithm. 

∂ L
∂θ1

=0

∂ L
∂θ2

=0
⋯

∂ L
∂θK

=0



Learning With Hidden Variables
● Let's say we have want to learn the parameters of the 

following Bayes' net:  

● We have a database of patient information that 
includes the lifestyle variables, and the symptom 
variables, but not a heart disease diagnosis.

● HeartDisease is a hidden variable.

DietSmoking

HeartDisease

Symptom2Symptom1

Exercise

Symptom3



Our Dilemma
● Chicken and egg problem:

– If we knew the parameters of the Bayes' net, we could 
estimate the probability of the HeartDisease variable.

– If we know the value of the HeartDisease variable, we 
could use it to learn the Bayes' net parameters.

● We don't have either. 
● The Solution: Expectation Maximization



Expectation Maximization
● Assume that our hidden variables are Z, observed 

variables are X.  
● Guess an assignment to our parameters   .
● Expectation-Step: 

– Compute the expected value of our hidden variables E[Z]. 
● Maximization-Step

– Pretend that E[Z] is the true value of Z and use ML to 
calculate a new 





θ̂=argmax
θ̂

∑
i=1

N

log (P (x i , E [Z i] ; θ̂))=argmax
θ̂

LL



EM Properties
● EM is guaranteed to converge to a local optimum.
● Guaranteed convergence is good.  
● Local optimum is bad – the algorithm is sensitive to 

our initial guess for   . 



An Aside: Covariance
● Remember variance, the expected squared difference 

from the mean:

● Now consider two continuous random variables x1 and 
x2, covariance is defined as:

 2=Var [X ]=E [ x−2 ]=∫
−∞

∞

x−2 p  x dx

cov x
1,

x
2
=E [x

1
−

1
x

2
−

2
]



Properties of  Covariance

● Covariance is symmetric: cov(x1, x2) = cov(x2, x1).

● If x1 and x2 are independent, then cov(x1, x2) = 0. 

● If cov(x1, x2) > 0 then x2 tends to increase as x1 increases.

● If cov(x1, x2) < 0 then x2 tends to decrease as x1 increases.
● Correlation is defined as follows:

● Just covariance rescaled:  

cor  x
1,

x
2
=

cov  x
1,

x
2



1


2

−1≤cor  x
1,

x
2
≤1



Random Vectors
● Consider a random vector X.
● The expectation is: 

● The covariance matrix is: 

● Sample mean and covariance matrix:

M=E [X ]=∫
−∞

∞

X p X d X

=E [X−M X−M 
T
]

M=
1

N
∑
i=1

N

X
i

=
1

N
∑
i=1

N

X
i
− M X

i
− M 

T



Covariance Matrix?
● For a random vector X with N dimensions, the 

covariance matrix is a N x N matrix where entry (i,j) 
is cov(xi,xj).

● For a two dimensional vector: 

● Things to notice 
– The matrix is symmetric.
– The values on the diagonal are just the variance of the i'th 

dimension.

covX =[ cov x
1,

x
1
 cov x

1,
x

2


cov x2, x1 cov x 2, x2  ]



Multi-Dimensional Gaussians
● Here is the formula for an N dimensional Gaussian.  

It's not as bad as it looks.

● Notice: ∑ and M uniquely describe a multivariate 
Gaussian.

p X = 1

2

N

2 ∣∣
1

2  e
−1

2
X−M 

T


−1
X−M 



Examples:

= [1 0
0 1 ]M=[00 ]



Examples

= [ 1 .9
.9 1 ]M=[00 ] = [ 2 .3

.3 1 ]M=[10 ]



EM for Gaussian Mixture Models
● Data points are generated from one of K Gaussians, each 

of which may have a different mean and covariance.
● Our hidden variables are K variables W1 through WK. 

Wj=1 if a point was generated by component j.
● Parameters: 

– Let      be the prior probability that a given point comes from 
mixture component j:  P(Wj=1) =       .

– There is a              for each mixture component.

● The goal is to recover these parameters from unlabeled 
data points.

 and 


1
through 

K
and 

1
through 

K
.


j


j



More on GMM
● The pdf:

● To generate a data point:
– First select a mixture component according to P(W).
– Then generate a point from the Gaussian associated with 

that mixture component.

p  x =∑
i=1

K


i
p x∣

i
,

i




Gaussian Mixture Example
We have this: Life would be easier if we had

this:



EM for GMM

● E-Step (pi,j is the probability that point i was generated by 
mixture component j )                         .  This is the 
expected value of Wj.    (Wj is an indicator variable.) 

p
i , j

=
p  x

i
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EM for GMM
● M Step: Update the parameters:


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Gaussian 
Mixture 
Example: 

Start

Advance apologies: in Black and 
White this example will be 

incomprehensible

http://www.cs.cmu.edu/~awm/tutorials/



After first 
iteration

http://www.cs.cmu.edu/~awm/tutorials/



After 2nd 
iteration

http://www.cs.cmu.edu/~awm/tutorials/



After 3rd 
iteration

http://www.cs.cmu.edu/~awm/tutorials/



After 4th 
iteration

http://www.cs.cmu.edu/~awm/tutorials/



After 5th 
iteration

http://www.cs.cmu.edu/~awm/tutorials/



After 6th 
iteration

http://www.cs.cmu.edu/~awm/tutorials/



After 20th 
iteration

http://www.cs.cmu.edu/~awm/tutorials/


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Gaussian Mixture Example: Start
	After first iteration
	After 2nd iteration
	After 3rd iteration
	After 4th iteration
	After 5th iteration
	After 6th iteration
	After 20th iteration

