EM and Gaussian Mixture Models

CS444

Some material on these is slides borrowed from Andrew Moore's
machine learning tutorials located at:

http://www.cs.cmu.edu/~awm/tutorials/



Parameterized Probability Distributions

* Parameterized probability distribution:
P(X)=P(X;0)
* § - The parameters for the distribution.

* Trivial discrete example: Xis a Boolean random

variable 0 indicates the probability that it will be true.




Fitting a Distribution to Data

e Assume we have a set of data points X to x.

* The goal is to find a distribution that fits that data.

|.e. that could have generated the data.



Maximum Likelihood Learning

e We will assume that x to x are iild — independent
and identically distributed.

* So we can write our problem like this (factorization):

N
é:argmaxH P(x.;0)
b i=1
* Taking the log gives us log likelihood:

N
ézargmax Z log(P(x|0))=argmax L
0 i=1 §)



Silly Example

* Parameterized coin: Theta — probability of heads:

* d -- vector of toss data, h number of heads, t number

of tails.

P(d;0) = ﬁP(dl.;B) = 9"(1-0)

i=1

L(d;0) = log(P(d;0)) = hlogb+tlog(1-0)
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Remember: —log(x)=1/x
X Example borrowed from Russel & Norvig



Maximizing Log Likelihood

* Just another instance of function maximization.

* One approach, set the partial derivatives to 0 and

solve: 0L
5_91_0
i
592_
oL
@BK_

* If you can't solve it, gradient descent, or your favorite

0

(

search algorithm.



Learning With Hidden Variables

* Let's say we have want to learn the parameters of the

following Bayes' net:

HeartDisease

* We have a database of patient information that

includes the lifestyle variables, and the symptom

variables, but not a heart disease diagnosis.



Our Dilemma

* Chicken and egg problem:

— If we knew the parameters of the Bayes' net, we could

estimate the probability of the HeartDisease variable.

— If we know the value of the HeartDisease variable, we

could use it to learn the Bayes' net parameters.
* We don't have either.

* The Solution: Expectation Maximization



Expectation Maximization

Assume that our hidden variables are Z, observed

variables are X.

Guess an assignment to our parameters g .
Expectation-Step:

— Compute the expected value of our hidden variables E[Z].
Maximization-Step

— Pretend that E[Z] is the true value of Z and use ML to

calculate a new 0

N
ézargmax > log(P(x,, E[Zi];é)):arg{nax LL

§ i=1 0



EM Properties

* EM is guaranteed to converge to a local optimum.

* Guaranteed convergence is good.

* Local optimum is bad — the algorithm is sensitive to

our initial guess for 6 .



An Aside: Covariance

* Remember variance, the expected squared difference

from the mean:

o’ =Var[X]=E[(x—u)"]= | (x—n)* p(x)dx

— 00

e Now consider two continuous random variables X and

X, covariance is defined as:

cov(x, x,)=E[(x,—u ) (x,—n,)]



Properties of Covariance

Covariance is symmetric: cov(x, x) = cov(x_, x ).
1 2 2 1
If x_and x_ are independent, then cov(x, x ) = 0.
If cov(x, x,) > 0 then x, tends to increase as x increases.
If cov(x, x,) < 0 then x, tends to decrease as x, increases.

Correlation is defined as follows:

cov(x, x,)

cor(x, x,)=
| 0_10_2

Just covariance rescaled: —1<cor(x x,)<1



Random Vectors

Consider a random vector X.

The expectation is: N
M=E[X]=[ Xp(X)dX

The covariance matrix is:
S=E[(X-M)(X-M)']

Sample mean and covariance matrix:

> (X, )X,

1 ¢_1
N i=1 . N i=1



Covariance Matrix?

* For a random vector X with N dimensions, the
covariance matrix is a N x N matrix where entry (i,j)

is cov(x,x).
i
* For a two dimensional vector:

cov(x, x) cov(x, x
cov(X)= (x,x) bx,. %)

cov(x, x,) cov(x,x,)

* Things to notice
— The matrix is symmetric.

— The values on the diagonal are just the variance of the i'th

dimension.



Multi-Dimensional Gaussians

* Here is the formula for an N dimensional Gaussian.

It's not as bad as it looks.

p(X)=|—— |

N 1

(2m)? =P

* Notice: ). and M uniquely describe a multivariate

Gaussian.



Examples:
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EM for Gaussian Mixture Models

* Data points are generated from one of K Gaussians, each

of which may have a different mean and covariance.
» Our hidden variables are K variables W through W .

szl if a point was generated by component j.

* Parameters:

- Let Ly be the prior probability that a given point comes from
mixture component j: P(szl) = T
— There is a pand 2 for each mixture component.
u, through p and 2. through 2. .
* The goal is to recover these parameters from unlabeled

data points.



More on GMM

K

* The pdf: p(x)=2, 7 p(x[u, =)

i=1

* To generate a data point:
— First select a mixture component according to P(W).

— Then generate a point from the Gaussian associated with

that mixture component.



Gaussian Mixture Example

We have this: Life would be easier if we had
this:

8 T T T T T T T 8 T T T T T T
8t . ) . 8y . ]
- - ol " -“- ";é;r-ff
- - wn ol g
- ‘._.:ﬂ.r ":'-f_ . Lt A s
Lo AT i IR
o "t F j!?k | i "a . f‘f;ik L
. e w T . PR o= Y At BT s
2l < Sl U =R
" - N ] £ 5 a=a " . . -_: -
R = e " 21 L -1
2r ‘.t-‘ =4 " UL N " - e N
- & n'li“.f' % T e - . . i'i..l' .J' : . "
AT L . = 3o wwS L. - DR TR N A
v L4 - - _.'I;‘ I L. E oy .-‘,,‘...':___--_._. :
CRRCLN S riidly DT e Wi <YL . el R
. LI, 4 1 - - : N o A P i
ok a, % \}".'u-;:f-:' RET TR 7- :ﬁg“h‘f*“}\: L Or : o -, e th c!-aﬁ-f:"‘;ﬂ- =Lt ]
R o M AL St S R A AP e A L
L OO T e " L i R P L
z - . s *ur o ml Egme - s St el - *
#h“ :'r -* -.' - .; '-l-“. - - "r P M
ot L TERY T S 2t -t T
’
T ..:., - = *
P N
At . —Ar .
_6 L L L L L L L _6 1 1 1 1 1 1 1



EM for GMM

e E-Step (p. is the probability that point i was generated by

l,)

mixture component j ) P(W =1[x,,0) . Thisis the

expected value of W, (W is an indicator variable.)
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EM for GMM

* M Step: Update the parameters:

N
P, X, 2.0 (x—u ) (x, )
i=1 i=1
n = D> =

J

N
2.7, 2.7,

=1

-~
I
p—
-~



Gaussian

Mixture

Example:
Start

Advance apologies: in Black and
White this example will be
incomprehensible

http://www.cs.cmu.edu/~awm/tutorials/



After first

Iiteration

http://www.cs.cmu.edu/~awm/tutorials/



After 2nd

Iiteration

http://www.cs.cmu.edu/~awm/tutorials/



After 3rd

Iiteration

http://www.cs.cmu.edu/~awm/tutorials/



After 4th

Iiteration

http://www.cs.cmu.edu/~awm/tutorials/



After 5th

Iiteration

http://www.cs.cmu.edu/~awm/tutorials/



After 6th

Iiteration

http://www.cs.cmu.edu/~awm/tutorials/



After 20th

Iteration

http://www.cs.cmu.edu/~awm/tutorials/
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