Support Vector Machines

Some material on these is slides borrowed from Andrew Moore's machine learning tutorials located at:

Where Should We Draw the Line?

Margins

 Margin – The distance from the decision boundary to the closest point.

Support Vector Machine

- Find the boundary with the maximum margin.
- The points that determine the boundary are the support vectors.

Finding the Boundary...

• The equation for a plane:

$$w \cdot x + b = 0$$

• Suppose we have two classes, -1 and 1, we can use this equation for classification: $c(\mathbf{x}) = sign(\mathbf{w} \cdot \mathbf{x} + b)$

Visualizing the Boundary...

• We can get our perceptron to do this.

Creating A Margin

- Input-output pairs: $(\mathbf{x}_{i}, t_{j}), t_{i} = -1 \text{ or } 1$
- We don't just want our samples to be on the right side, we want them to be some distance from the boundary Instead of this $\longrightarrow w \cdot x_i + b > 0$ for $t_i = +1$ $w \cdot x + b < 0$ for $t_i = -1$

We want this
$$\longrightarrow w \cdot x_i + b \ge +1$$
 for $t_i = +1$
 $w \cdot x_i + b \le -1$ for $t_i = -1$

Which is the same as this $- t_i (w \cdot x_i + b) \ge +1$

Two Boundaries...

Minimization

• The distance from a point, \boldsymbol{x} , to the boundary can be expressed as: $\frac{|\boldsymbol{w} \cdot \boldsymbol{x} + \boldsymbol{b}|}{\|\boldsymbol{w}\|}$

• This can be maximized by minimizing ||**w**||.

• Minimize
$$\frac{1}{2} \|w\|^2$$
 subject to $t_i(w \cdot x_i + b) \ge +1$, for all i.
Determines the size of the margin Enforces correct classification

Quadratic Programming

- Minimize $\frac{1}{2} \| \mathbf{w} \|^2$ subject to $t_i (\mathbf{w} \cdot \mathbf{x}_i + b) \ge +1$, for all i.
- Minimizing a quadratic function subject to linear constraints... So What?
- This is a (convex) quadratic programming problem.
- What does that mean?
 - No local minima.
 - Good solvers exist.

Lagrange Multipliers

- Minimize $\frac{1}{2} \| \mathbf{w} \|^2$ subject to $t_i (\mathbf{w} \cdot \mathbf{x}_i + b) \ge +1$ for all i.
- Now, apply some mathematical hocus pocus....

Dual Formulation

• Maximize:

$$L_{D} = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} t_{i} t_{j} (\boldsymbol{x}_{i} \cdot \boldsymbol{x}_{j})$$

subject to $\alpha_{i} \ge 0$ and $\sum_{i} \alpha_{i} t_{i} = 0$

• Once this is done we can get our weights according to:

$$w = \sum_{i} \alpha_{i} t_{i} x_{i}$$

Two Things to Notice

$$w = \sum_{i} \alpha_{i} t_{i} x_{i}$$

Most of the α_i will be 0. Those that are non-zero correspond to support vectors.

$$L_D = \sum_i \alpha_i - \frac{1}{2} \sum_i \sum_j \alpha_i \alpha_j t_i t_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

• The inputs only show up in the form of dot products.

What About This Case?

A 1-D Classification Problem

• Where will an SVM put the decision boundary?

1-D Problem Continued

- No problem.
- Equidistant from the two classes.

The Non-Separable Case

• Now we have a problem...

Increase the Dimensionality

 Use our old data points x_i to create a new set of data points

•
$$\boldsymbol{z}_{i} = (\boldsymbol{x}_{i}, \boldsymbol{x}_{i}^{2})$$

Increase the Dimensionality

 \cap

• Now the data is separable. 0

The Blessing of Dimensionality (?)

- This works in general.
- When you increase the dimensionality of your data, you increase the chance that it will be linearly separable.
- In an *N*-1 dimensional space you should always be able to separate *N* data points. (Unless you are unlucky.)

Let's do it!

- Define a function φ(x) that maps our low
 dimensional data into a very high dimensional space.
- Now we can just rewrite our optimization to use these high dimensional vectors:

$$L_{D} = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} t_{i} t_{j} [\phi(\boldsymbol{x}_{i}) \cdot \phi(\boldsymbol{x}_{j})]$$

subject to $0 \le \alpha_{i} \le C$ and $\sum_{i} \alpha_{i} t_{i} = 0$

• What's the problem?

The Kernel Trick

- It turns out we can often find a kernel function K such that: $K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$
- In fact, almost any kernel function corresponds to a dot product in *some* space.
- Now we have:

$$L_{D} = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} t_{i} t_{j} K(\boldsymbol{x}_{i}, \boldsymbol{x}_{j})$$

subject to $0 \le \alpha_{i} \le C$ and $\sum_{i} \alpha_{i} t_{i} = 0$

• Support vector machines are also called kernel machines.

The Kernel Trick

- We get to perform classification in very high dimensional spaces for almost no additional cost.
- Some Kernels:
 - Polynomial: $K(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i \cdot \mathbf{x}_j + 1)^q$

- Radial Basis Function:
$$K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left[\frac{-\|\boldsymbol{x}_i - \boldsymbol{x}_j\|^2}{\sigma^2}\right]$$

- Sigmoidal:
$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(2\mathbf{x}_i \cdot \mathbf{x}_j + 1)$$

Nice Things about SVM's

- Good generalization because of margin maximization.
- Not many parameters to pick.
 - No learning rate, no hidden layer size.
 - Just C, and possibly some parameters for kernel function.
 - You also have to pick a kernel function.
- No problems with local minima.
- What about SVM regression? It's possible, but we won't talk about it.