
Minimum Cost Search (Dijkstra's Algorithm)

(Some material from Artificial Intelligence: Foundations of Computational Agents, Poole and Mackworth, 2010.)

Path Nodes

● For our purposes:
– A “Node” corresponds to a state in the problem. There

may be infinitely many Nodes.
– A “PathNode” is a data type that represents a partial

solution and the associated cost.
● (This is not standard terminology. Our textbook does not discuss

PathNodes; in Russel & Norvig, they are just called “Nodes”.)

Depth First Search (With PathNodes!)
 procedure DepthFirstSearch(G,S,goal)
 Inputs
 G: graph with nodes N and arcs A
 S: set of start nodes
 goal: Boolean function of states
 cost: The cost function for arcs
 Output
 path from a member of S to a node for which goal is true
 or if there are no solution paths ⊥
 Local
 Frontier: a stack of PathNodes
 Explored: set of nodes that have been expanded

 Frontier ← Empty Stack
 Frontier.push(PathNode(s, None, 0)) for s ∈ S
 Explored ← {}
 while (Frontier is not empty)
 Pop pNode from Frontier
 Explored ← Explored {∪ pNode.state}

 if (goal(pNode.state)) then
 return The path represented by pNode
 For all { s⟨

k
,s⟩ : s⟨

k
,s A s Frontier s Explored}⟩ ∈

 Frontier.push(PathNode(s, pNode, cost(s⟨
k
,s⟩)

 return ⊥

∉∧∧ ∉

Lowest Cost Search (Dijkstra's Algorithm)
 procedure LowestCostSearch(G,S,goal)
 Inputs
 G: graph with nodes N and arcs A
 S: set of start nodes
 goal: Boolean function of states
 cost: The cost function for arcs
 Output
 path from a member of S to a node for which goal is true
 or if there are no solution paths ⊥
 Local
 Frontier: a Priority Queue of PathNodes ordered by cost
 Explored: set of nodes that have been expanded

 Frontier ← Empty Stack
 Frontier.enqueue(PathNode(s, None, 0)) for s ∈ S
 Explored ← {}
 while (Frontier is not empty)
 Pop pNode from Frontier
 Explored ← Explored {pNode.state}∪

 if (goal(pNode.state)) then
 return The path represented by pNode
 For all { s⟨

k
,s : s⟩ ⟨

k
,s A s Frontier s Explored}⟩ ∈

 Frontier.enqueue(PathNode(s, pNode, cost(s⟨
k
,s)⟩

 return ⊥

∉∧∧ ∉

Lowest Cost Search (Dijkstra's Algorithm)
 procedure LowestCostSearch(G,S,goal)
 Inputs
 G: graph with nodes N and arcs A
 S: set of start nodes
 goal: Boolean function of states
 cost: The cost function for arcs
 Output
 path from a member of S to a node for which goal is true
 or if there are no solution paths ⊥
 Local
 Frontier: a Priority Queue of PathNodes ordered by cost
 Explored: set of nodes that have been expanded

 Frontier ← Empty Stack
 Frontier.enqueue(PathNode(s, None, 0)) for s ∈ S
 Explored ← {}
 while (Frontier is not empty)
 Pop pNode from Frontier
 Explored ← Explored {pNode.state}∪

 if (goal(pNode.state)) then
 return The path represented by pNode
 For all { s⟨

k
,s : s⟩ ⟨

k
,s A s Frontier s Explored}⟩ ∈

 Frontier.enqueue(PathNode(s, pNode, cost(s⟨
k
,s)⟩

 return ⊥

∉∧∧ ∉

Missing detail: if s
is already in the
frontier, then it's
PathNode should
be replaced if the
new node would
have a lower path
cost.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

