Bayesian Networks

Probabilistic Classification

- Goal:
 - Gather Labeled Training Data
 - Build/Learn a Probability Model
 - Use the model to infer class labels for unlabeled data points
- Example: Spam Filtering...

(Simplistic) Spam Filtering

SPAM

viagra	discount	cs444	count
т	Т	т	0
Т	Т	F	180
т	F	Т	0
Т	F	F	1200
F	т	Т	8
F	Т	F	600
F	F	Т	12
F	F	F	6000
Total:			8000

NON-SPAM

viagra	discount	cs444	count
т	Т	Т	0
Т	Т	F	0
т	F	т	1
Т	F	F	3
F	т	Т	6
F	Т	F	20
F	F	Т	70
F	F	F	700
Total:			800

Quiz! Estimate: P(spam)=?? $P(\neg spam)=??$

 $P(\neg viagra, discount, cs444|spam) = ??$ $P(\neg viagra, discount, cs444|\neg spam) = ??$ Bayes' Optimal Classifier I (No Independence Assumptions)

- Assume a multivalued random variable C that can take on the values c_i for i = 1 to i = K.
- Assume M input attributes X_j for j = 1 to M.
- Learn $P(X_{1}, X_{2}, ..., X_{M} | c_{i})$ for each *i*.
 - Treat this as K different joint PDs.
- Given a set of input values $X_1 = u_1, X_2 = u_2, \dots, X_M = u_M$, classification is easy (?):

$$C^{\text{predict}} = \operatorname{argmax}_{c_i} P(C = c_i | X_1 = u_1, \dots, X_M = u_m)$$

Bayes' Optimal Classifier II (No Independence Assumptions)

$$C^{\text{predict}} = \underset{c_i}{\operatorname{argmax}} P(C = c_i | X_1 = u_1, \dots, X_M = u_m)$$

• Apply Bayes' rule

$$C^{predict} = argmax_{c_i} \frac{P(X_1 = u_1, \dots, X_M = u_m | C = c_i) P(C = c_i)}{P(X_1 = u_1, \dots, X_M = u_m)}$$

• Conditioning (applying law of total probability):

$$C^{predict} = argmax \frac{P(X_1 = u_1, \dots, X_M = u_m | C = c_i) P(C = c_i)}{\sum_{i=1}^{K} P(X_1 = u_1, \dots, X_M = u_m | C = c_i) P(C = c_i)}$$

An Aside: MAP vs. ML

• This is a maximum a posteriori (MAP) classifier:

$$C^{\text{predict}} = \underset{c_i}{\operatorname{argmax}} P(C = c_i | X_1 = u_1, \dots, X_M = u_m)$$

• We could also consider a maximum likelihood (ML) classifier:

$$C^{\text{predict}} = \underset{c_i}{\operatorname{argmax}} P(X_1 = u_1, \dots, X_M = u_m | C = c_i)$$

Bayes' Optimal Classifier III (No Independence Assumptions)

$$C^{predict} = argmax \frac{P(X_1 = u_1, \dots, X_M = u_m | C = c_i) P(C = c_i)}{\sum_{i=1}^{K} P(X_1 = u_1, \dots, X_M = u_m | C = c_i) P(C = c_i)}$$

- Notice that the denominator is the same for all classes.
- We can simplify this to:

$$C^{predict} = argmax P(X_1 = u_1, X_2 = u_2, ..., X_M = u_m | C = c_i) P(C = c_i)$$

• If you have the true distributions, this is the <u>best</u> choice.

$$C^{predict} = argmax P(X_1 = u_1, X_2 = u_2, ..., X_M = u_m | C = c_i) P(C = c_i)$$

- Email contains "discount", "CS444", but not "viagra". Is it spam?
- Recall: $P(spam) \approx .91$ $P(\neg spam) \approx .9$ $P(\neg viagra, discount, cs 444|spam) = .001$ $P(\neg viagra, discount, cs 444|\neg spam) = .0075$

$$C^{predict} = argmax P(X_1 = u_1, X_2 = u_2, ..., X_M = u_m | C = c_i) P(C = c_i)$$

 Email contains "discount", "CS444", but not "viagra". Is it spam?

• Recall:
$$P(spam) \approx .91$$

 $P(\neg spam) \approx .09$
 $P(\neg viagra, discount, cs 444|spam) = .001$
 $P(\neg viagra, discount, cs 444|\neg spam) = .0075$

 $P(\neg viagra, discount, cs 444 | spam) P(spam) = .001 * .91 = .00091$ $P(\neg viagra, discount, cs 444 | \neg spam) P(\neg spam) = .0075 * .09 = .000675$

The Problem...

- Assume we want to use *hundreds* of words.
- What is the problem here?

$$C^{predict} = argmax P(X_1 = u_1, X_2 = u_2, ..., X_M = u_m | C = c_i) P(C = c_i)$$

The Problem...

- Assume we want to use *hundreds* of words.
- What is the problem here?

$$C^{predict} = argmax P(X_1 = u_1, X_2 = u_2, ..., X_M = u_m | C = c_i) P(C = c_i)$$

• If M is largish it is impossible to learn

$$P(X_{1}, X_{2}, \dots, X_{M} | c_{i}).$$

(Changing Gears) Review

- Joint probability distributions are the key to probabilistic inference.
- If all *N* variables are completely independent, we can represent the full joint distribution using *N* numbers.
- If every variable depends on every other, we need to store $2^N-1\,$ values
- There must be something in-between...

Conditional Independence

• Saying that

"X is conditionally independent of Y given Z" means: $P(X \mid Y, Z) = P(X \mid Z)$ equivalently: $P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z)$

• This graph encodes the same thing:

Bayesian Networks

- Directed acyclic graphs that have the following interpretation:
 - Each variable is conditionally independent of all it's non-descendants, given the value of it's parents.

 $P(C \mid A, B, D) = P(C \mid B)$ $P(E \mid A, B, C, D, F) = P(E \mid C)$ $P(F \mid A, B, C, D, E) = P(F \mid C, D)$

Bayesian Networks

 A Bayesian network is a directed acyclic graph that represents causal (ideally) relationships between random variables.

Specifying a Bayes' Net

- We need to specify:
 - The topology of the network.
 - The conditional probabilities.

Bayesian Networks

• We can then reconstruct any entry from the joint distribution using:

$$P(X_1, X_2, \dots, X_N) = \prod_{i=1}^N P(X_i | parents(X_i))$$

- In other words, the complete joint probability distribution can be reconstructed from the *N* conditional distributions.
- For N binary valued variables with M parents each

-
$$2^N$$
 vs. $N * 2^M$

Simple Application: Naive Bayes' classifier

- Back to spam filtering...
- Assumption: spamminess impacts the probability of different words. Words are conditionally independent of each other given spam/non-spam status.
- Consider four boolean random variables:
 - Spam (message is spam)
 - Viagra (message contains word "viagra")
 - Discount (message contains word "discount")
 - CS444 (message contains word "CS444")
- What will the graphical model look like?

Belief Network

- Now we need to specify the probabilities
- How does this help with inference...

Naïve Bayes' Classifier

- Remember: If *M* is large, it is impossible to learn $P(X_{1}, X_{2}, \dots, X_{M} \mid c_{i}).$
- The solution (?): assuming that the X_j are independent given C:

$$P(X_1, ..., X_M | c_i) = \prod_{i=1}^{M} P(X_j | c_i)$$

• The naïve Bayes' classifier:

$$C^{predict} = \underset{c_i}{argmax} P(C = c_i) \prod_{j=1}^{M} P(X_j | c_i)$$

Why is that Naïve?

- The symptoms probably *aren't* independent given the disease.
- Assuming they are allows us to classify based on thousands of attributes.
- This seems to work pretty well in practice.
- Do you see any advantage of this relative to the classifiers we saw earlier?

An Note on Implementation

if M is largish this product can get really small. Too small.

$$C^{predict} = \operatorname{argmax}_{c_i} P(C = c_i) \prod_{j=1}^{m} P(X_j | c_i)$$

• Solution:

$$C^{\text{predict}} = \underset{c_i}{\operatorname{argmax}} \left| \log P(C = c_i) + \sum_{j=1}^{M} \log P(X_j | c_i) \right|$$

• Remember that log(ab) = log(a) + log(b)