Probability

Discrete Random Variables

- We denote discrete random variables with capital letters.
- A boolean random variable may be either true or false

- A = true or A = false.

- P(a), or P(A=true) denotes the probability that A is true.
- Also unconditional probability or prior probability.
- P(¬a) or P(A=false) denotes the probability that A is not true.

Discrete Random Variables

• P(a): the fraction of worlds in which A is true.

• P(a) = .2 $P(\neg a) = .8$

More Notation

- We can apply boolean operators
 - Probability of a AND b: $P(a \land b)$ or P(a,b)
 - Probability of a OR b: P(a \lor b)
 - In general: $P(\alpha)$

The Axioms of Probability

- $0 \le P(\alpha)$ for any proposition α .
- $P(\tau)=1$ if τ is a tautology.
- $P(\alpha \lor \beta) = P(\alpha) + P(\beta)$ if α and β are contradictory propositions

A Simple Proof

- $0 \le P(\alpha)$ for any proposition α .
- $P(\tau)=1$ if τ is a tautology.
- $P(\alpha \lor \beta) = P(\alpha) + P(\beta)$ if α and β are contradictory propositions
- Prove that $P(\neg \alpha) = 1 P(\alpha)$

$$P(\neg \alpha \lor \alpha) = 1 \quad (axiom \ 2)$$

$$P(\neg \alpha) + P(\alpha) = 1 \quad (axiom \ 3)$$

$$P(\neg \alpha) = 1 - P(\alpha) \quad rearranging \ terms$$

Multi-valued Random Variables

- We can define a random variable that can take on more than two possible values.
- E.g. C is one of $\{v_{1}^{'}, v_{2}^{'}, ..., v_{N}^{'}\}$
- Note, it must be the case that :

$$\sum_{1}^{N} P(v_i) = 1$$

 Example: W may have the domain {sunny, cloudy, rainy}.

Conditional Probability

- P(a | b), the probability that A is true given that B is true.
 - P(sunny) = .1
 - P(sunny | warm) = .3
- Definition:

$$P(a|b) = \frac{P(a \wedge b)}{P(b)}$$

- The fraction of worlds in which B is true, that also have A true.
- May also be written as the product rule:
 P(a∧b)=P(a|b)P(b)

Conditional Probability

- P(a) = .3
- P(b) = .1
- $P(a \land b) = .05$
- P(a | b) = .5

Probability Distributions

- A probability distribution is a complete description of the probability of all possible assignments to a random variable.
- Examples:
- For a boolean variable
 - P(A=TRUE) = .1
 - P(A=FALSE) = .9
- Random variable W from the domain {sunny, cloudy, rainy}

$$- \mathbf{P}(W) = \langle .2, .7, .1 \rangle$$

Joint Probability Distribution

• A complete description of the probability of all possible assignments to all variables (atomic event).

Two boolea	an	variables A and B
<u>A</u>	В	Prob
Т	Т	.1
Т	F	.2
F	Т	• 5
F	F	.2

Rooster Crows (C) and Weather (W)

<u>C</u>	W	Prob
Т	sunny	.05
Т	cloudy	.2
Т	rainy	0
F	sunny	.05
F	cloudy	. 4
F	rainy	.3

Inference

- Determining the probability of an event of interest, given everything that we know about the world.
- This is easy if we have the joint probability distribution.
- The probability of a proposition is equal to the sum of the probabilities of worlds in which it holds.

$$P(\alpha) = \sum_{\omega \in \{\omega : \omega \models \alpha\}} P(\omega)$$

Inference Example

<u>A</u>	В	Prob
Т	Т	.1
Т	F	.2
F	Т	. 5
F	F	. 2

- What is P(A = true)?
- P(a) = ??

Inference Example

<u>A</u>	В	Prob
Т	Т	.1
Т	F	.2
F	Т	• 5
F	F	.2

- What is P(A = true)?
- P(a) = .1 + .2 = .3
- In general $P(Y) = \sum_{z} P(Y, z)$ marginalization.
- Here Y and Z may be sets of variables, and the sum is over all possible assignments to the variables Z.

Conditional Inference

<u>C</u>	W	Prob
Т	sunny	.05
Т	cloudy	.2
Т	rainy	0
F	sunny	.05
F	cloudy	. 4
F	rainy	.3

- P(C=true | W =sunny)?
- Remember that: $P(a|b) = \frac{P(a \land b)}{P(b)}$
- P(C=true | W = sunny) = ??

Conditional Inference

- P(C=true | W =sunny)?
 Remember that: P(a|b)= P(a∧b)/P(b)
- P(C=true | W = sunny) = .05 / (.05 + .05) = .5

"Learning" a Joint Probability Distribution

- Where does the joint probability distribution come from?
- Maybe we (or an expert) make it up.
- Or we can learn it: $\hat{P}(row) = \frac{\# instances that match row}{\hat{P}(row)}$

total instances

C	W	#days	Prob
Т	sunny	12	12/38 = .32
Т	cloudy	3	3/38 = .08
Т	rainy	0	0/38 = .0
F	sunny	8	8/38 =.21
F	cloudy	10	10/38 = .26
F	rainy	5	5/38 =.13

total: 38

ANY PROBLEMS?

Problems with Learning PD

• This will quickly break down if we have more than a few variables.

Independence

- Variables A and B are independent if $P(a \mid b) = P(a)$
- We can also write: $P(a \wedge b) = P(a)P(b)$
 - Remember the product rule: $P(a \wedge b) = P(a|b)P(b)$
- Independence is a big deal for probabilistic reasoning.
 - Specifying the full joint PD requires exponential storage.
 - Learning it requires an exponentially growing amount of data.
 - These both become linear if all variables are independent.
 - This is called factoring the joint distribution.

Bayes' Rule

• The most useful identity in AI:

$$P(h|e) = \frac{P(e|h)P(h)}{P(e)}$$

- Think of *h* as hypothesis and *e* as evidence.
- P(e|h) is called likelihood.

$$posterior = \frac{likelihood \times prior}{evidence}$$

• Why would we know $P(e \mid h)$ and not $P(h \mid e)$?

Diagnosis

$$P(h|e) = \frac{P(e|h)P(h)}{P(e)}$$

- I have a cough, I want to know the probability that I have pneumonia.
- P(cough) = .1, P(pneumonia) = .001,
 P(cough | pneumonia) = .5
- P(pneumonia | cough) = (.5 * .001) / .1 = .005 = .5%

P(e)?

- That P(e) term seems a little odd. How do we know the prior probability of the evidence?
- We don't need to:
 - Maybe we don't care (if only want to know which hypothesis is most likely).
 - Otherwise:

$$P(e) = \sum_{h \in H} P(e|h) P(h)$$