Probability

Discrete Random Variables

- We denote discrete random variables with capital letters.
- A boolean random variable may be either true or false

 $-A =$ true or A=false.

- P(a), or P(A=true) denotes the probability that A is true.
- Also unconditional probability or prior probability.
- $P(\neg a)$ or $P(A = false)$ denotes the probability that A is not true.

Discrete Random Variables

 \bullet P(a): the fraction of worlds in which A is true.

• $P(a) = .2$ $P(\neg a) = .8$

More Notation

- We can apply boolean operators
	- $-$ Probability of a AND b: P(a \wedge b) or P(a,b)
	- $-$ Probability of a OR b: P(a \vee b)
	- In general: *P*(α)

The Axioms of Probability

- $0\!\leq\! P(\alpha)$ for any proposition α .
- $P(\tau)=1$ if τ is a tautology.
- \bullet $P(\alpha \vee \beta) = P(\alpha) + P(\beta)$ if α and β are contradictory propositions

A Simple Proof

- $0\!\leq\! P(\alpha)$ for any proposition α .
- $P(\tau)=1$ if τ is a tautology.
- \bullet $P(\alpha \vee \beta) = P(\alpha) + P(\beta)$ if α and β are contradictory propositions
- Prove that $P(\neg \alpha) = 1-P(\alpha)$

$$
P(\neg \alpha \lor \alpha) = 1 \quad (axiom 2)
$$

\n
$$
P(\neg \alpha) + P(\alpha) = 1 \quad (axiom 3)
$$

\n
$$
P(\neg \alpha) = 1 - P(\alpha) \quad rearranging terms
$$

Multi-valued Random Variables

- We can define a random variable that can take on more than two possible values.
- E.g. C is one of $\{v$ 1 , v 2 , ... ,v N }
- Note, it must be the case that :

$$
\sum_{1}^{N} P(v_i) = 1
$$

• Example: W may have the domain $\{$ sunny, cloudy, rainy}.

Conditional Probability

- P(a \vert b), the probability that A is true given that B is true.
	- $-$ P(sunny) = $.1$
	- $P(\text{sum} | \text{warm}) = .3$
- Definition:

$$
P(a|b) = \frac{P(a \wedge b)}{P(b)}
$$

- The fraction of worlds in which B is true, that also have A true.
- May also be written as the product rule:

 $P(a \wedge b) = P(a|b)P(b)$

Conditional Probability

- $P(a) = .3$
- $P(b) = .1$
- $P(a \wedge b) = .05$
- $P(a | b) = .5$

Probability Distributions

- A probability distribution is a complete description of the probability of all possible assignments to a random variable.
- Examples:
- For a boolean variable
	- $P(A=TRUE) = .1$
	- $P(A=FALSE) = .9$
- Random variable W from the domain {sunny, cloudy, rainy}

$$
-
$$
 P(W) = <.2, .7, .1>

Joint Probability Distribution

• A complete description of the probability of all possible assignments to all variables (atomic event).

Two boolean variables A and B Rooster Crows (C) and Weather (W)

Inference

- Determining the probability of an event of interest, given everything that we know about the world.
- This is easy if we have the joint probability distribution.
- The probability of a proposition is equal to the sum of the probabilities of worlds in which it holds.

$$
P(\alpha) = \sum_{\omega \in {\{\omega : \omega \models \alpha\}}} P(\omega)
$$

Inference Example

- What is $P(A = true)$?
- $P(a) = ??$

Inference Example

- What is $P(A = true)$?
- $P(a) = .1 + .2 = .3$
- In general $P(Y)=\sum P(Y,z)$ marginalization. *z*
- Here Y and Z may be sets of variables, and the sum is over all possible assignments to the variables Z.

Conditional Inference

- $P(C=true | W = sunny)$?
- Remember that: $P(a|b) =$ *P*(*a*∧*b*) *P*(*b*)
- $P(C=true | W = sunny) = ??$

Conditional Inference

- $P(C=true | W = sunny)$?
- Remember that: $P(a|b) =$ *P*(*a*∧*b*) *P*(*b*)
- P(C=true | W = sunny) = $.05 / (.05 + .05) = .5$

"Learning" a Joint Probability **Distribution**

- Where does the joint probability distribution come from?
- Maybe we (or an expert) make it up.
- Or we can learn it: $\hat{P}(row)$ = *# instances that match row*

total instances

total: 38

ANY PROBLEMS?

Problems with Learning PD

• This will quickly break down if we have more than a few variables.

Independence

- Variables A and B are independent if $P(a \mid b) = P(a)$
- We can also write: $P(a \wedge b) = P(a)P(b)$
	- $-P(\mathcal{A}|\mathcal{B})P(\mathcal{B})=P(\mathcal{A}|\mathcal{B})P(\mathcal{B})$
- Independence is a big deal for probabilistic reasoning.
	- Specifying the full joint PD requires exponential storage.
	- Learning it requires an exponentially growing amount of data.
	- These both become linear if all variables are independent.
	- This is called factoring the joint distribution.

Bayes' Rule

• The most useful identity in AI:

$$
P(h|e) = \frac{P(e|h)P(h)}{P(e)}
$$

- Think of h as hypothesis and e as evidence.
- $P(e|h)$ is called likelihood.

$$
posterior = \frac{likelihood \times prior}{evidence}
$$

• Why would we know $P(e | h)$ and not $P(h | e)$?

Diagnosis

$$
P(h|e) = \frac{P(e|h)P(h)}{P(e)}
$$

- I have a cough, I want to know the probability that I have pneumonia.
- P(cough) = $.1$, P(pneumonia) = $.001$, P (cough | pneumonia) = .5
- P(pneumonia | cough) = $(.5 * .001) / .1 = .005 = .5\%$

P(e)?

- That P(e) term seems a little odd. How do we know the prior probability of the evidence?
- We don't need to:
	- Maybe we don't care (if only want to know which hypothesis is most likely).
	- Otherwise:

$$
P(e) = \sum_{h \in H} P(e|h) P(h)
$$