Heuristic Search

The Story So Far...

• The central problem of this course:

$$\underset{X}{\operatorname{arg max}} Smartness(X)$$

– Possibly with some constraints on X.

• (Alternatively: $\underset{\mathbf{y}}{\operatorname{arg min}} Stupidness(X)$

- Possible categories for $\underset{X}{\operatorname{arg\ max}}$ Smartness(X) , in decreasing order of desirability:
 - Efficient closed-form solution.
 - Linear Regression etc.

- Possible categories for $\underset{X}{\arg\max} \; Smartness(X)$, in decreasing order of desirability:
 - Efficient closed-form solution.
 - Linear Regression etc.
 - Differentiable and convex.
 - Logistic Regression
 - Quadratic programming (SVMs) etc.

- Possible categories for $\underset{X}{\operatorname{arg\ max}}$ $\underset{X}{\operatorname{Smartness}}(X)$, in decreasing order of desirability:
 - Efficient closed-form solution.
 - Linear Regression etc.
 - Differentiable and convex.
 - Logistic Regression
 - Quadratic programming (SVMs) etc.
 - Differentiable and non-convex.
 - Multi-layer Perceptrons etc.

- Possible categories for $\underset{X}{\operatorname{arg\ max}}$ $\underset{X}{\operatorname{Smartness}}(X)$, in decreasing order of desirability:
 - Efficient closed-form solution.
 - Linear Regression etc.
 - Differentiable and convex.
 - Logistic Regression
 - Quadratic programming (SVMs) etc.
 - Differentiable and non-convex.
 - Multi-layer Perceptrons etc.
 - Non differentiable

Example 1 – Constraint Satisfaction Problems

- Problems like N-Queens: place N queens on an NxN chess board so that no two are threatening.
 - There is no derivative to follow.
 - We can evaluate how close an assignment is to a solution
- The search space may be too large to search using the exhaustive algorithms we saw earlier.

Example 2 – Policy Search

- Two approaches to reinforcement learning:
 - Value Estimation Learn to predict the long term reward associated with states. (We've been working on this.)
 - Policy Search Learn a policy *directly*, without trying to predict reward.
- For example: a neural network where the input is the state information and the output is an action choice.
 - (It is possible to estimate gradients, but expensive.)

Hill Climbing

- Assume that our search problem allows us to take one of a fixed number of moves.
- Each move transforms the current state to a successor state.
- States can be evaluated by an objective function.
- Hill Climbing Algorithm:
 - Start in an arbitrary state.
 - Choose the move that results in the best successor state.
 - Repeat until converged.

Properties of Hill Climbing

- Easy to program.
- Often finds good solutions quickly.
- Very susceptible to local maxima.
- Can be inefficient if many moves are available.
- Lots of variations:
 - Stochastic hill climbing randomly choose an uphill move.
 - Random restart hill climbing redo search until satisfied with result.
 - Simulated Annealing...

Simulated Annealing

- Avoiding local maxima requires us to take some steps downhill.
- Simulated Annealing attempts to find the right tradeoff between uphill and downhill moves:

Start in a random state

- ** Select a random move
- * If the move results in improvement, keep it
- * If the move does *not* result in improvement, keep it with probability P^{SA}.
- * Return to **.

Computing P^{SA}

$$P^{SA} = e^{\frac{-(E_{cur} - E_{move})}{T_{cur}}}$$

- P^{SA} decreases as $(E_{cur}-E_{move})$ increases. I.e. The worse the move, the less likely we are to keep it.
- P^{SA} also decreases as T_{cur} (temperature) decreases.
 - High temperature: random search.
 - Low temperature: randomized hill climbing.
- If we decrease temperature *infinitely* slowly, we can guarantee that the global optimum will be found :)

Genetic Algorithm

- (Basic algorithm due to John Holland, 1975)
- First, contrive a mapping from bit strings to your problem space.
 - Genotype -> Phenotype.
- Next, contrive an objective function for evaluating solutions:
 - fitness function.
 - F(phenotype) = fitness.

Genetic Algorithm

- Generate K bit strings randomly: a population of individuals.
- **Evaluate the fitness of each individual.
- Assign a probability to each individual proportional to it's fitness.
- Generate a new population:
 - Select 2 individuals (parents) according to probability assigned above.
 - Crossover: Pick a random bit position, and swap all bits after that position.
 - Mutation: flip individual bits with a small independent probability.
 - Repeat until we have K new individuals.
- Return to ** unless satisfied.

GA Illustration

(Figure from Russel & Norvig, Artifical Intelligence a Modern Approach.)

Does it Work?

- How well it works has a lot to do with the structure of the fitness surface.
- Getting it to work well requires carefully engineering the genotype->phenotype mapping.
- MANY variations:
 - Different methods for selecting individuals, rank ordered instead of proportional, keep the fittest, etc. etc...
 - Co-evolving parasites evolving test cases.
 - Independently evolving "island" populations.

More Recent/Practical Algorithms

- Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
 - Current population is selected from a multivariate normal distribution.
 - Distribution is updated after the population is evaluated.

CMA-ES

By Sentewolf (talk) (Uploads) - Transferred from en.wikipedia to Commons., Public Domain, https://commons.wikimedia.org/w/index.php?curid=48100101