Heuristic Search

The Story So Far...

* The central problem of this course:

arg max Smartness(X)
X

— Possibly with some constraints on X.

* (Alternatively: argmin Stupidness(X)
X

Properties of Smartness(X)

* Possible categories for arg max Smartness(X) , in
X
decreasing order of desirability:
— Efficient closed-form solution.

* Linear Regression etc.

Properties of Smartness(X)

* Possible categories for arg max Smartness(X) , in
decreasing order of desirabiIXity:
— Efficient closed-form solution.
* Linear Regression etc.
— Differentiable and convex.

* Logistic Regression

* Quadratic programming (SVMs) etc.

Properties of Smartness(X)

* Possible categories for arg max Smartness(X) , in
decreasing order of desirabiIXity:
— Efficient closed-form solution.
* Linear Regression etc.
— Differentiable and convex.
* Logistic Regression
* Quadratic programming (SVMs) etc.

— Differentiable and non-convex.

* Multi-layer Perceptrons etc.

Properties of Smartness(X)

Possible categories for arg max Smartness(X) , in
decreasing order of desirabiIXity:
— Efficient closed-form solution.
* Linear Regression etc.
— Differentiable and convex.
* Logistic Regression
* Quadratic programming (SVMs) etc.
— Differentiable and non-convex.

* Multi-layer Perceptrons etc.

— Non differentiable

° 77

Example 1 — Constraint Satisfaction Problems

* Problems like N-Queens: place N queens on an NxN

chess board so that no two are threatening.
— There is no derivative to follow.

— We can evaluate how close an assignment is to

a solution

* The search space may be too large to search using the

exhaustive algorithms we saw earlier.

Example 2 — Policy Search

* Two approaches to reinforcement learning:

— Value Estimation — Learn to predict the long
term reward associated with states. (We've

been working on this.)

— Policy Search — Learn a policy directly, without
trying to predict reward.

* For example: a neural network where the input is the

state information and the output is an action choice.

— (It is possible to estimate gradients, but

expensive.)

Hill Climbing

Assume that our search problem allows us to take one

of a fixed number of moves.

Each move transforms the current state to a successor
state.

States can be evaluated by an objective function.

Hill Climbing Algorithm:
— Start in an arbitrary state.

— Choose the move that results in the best successor
state.

— Repeat until converged.

Properties of Hill Climbing

Easy to program.

Often finds good solutions quickly.

Very susceptible to local maxima.

Can be inefficient if many moves are available.
Lots of variations:

— Stochastic hill climbing — randomly choose an uphill

MOVeE.

— Random restart hill climbing — redo search until

satisfied with result.

— Simulated Annealing...

Simulated Annealing

* Avoiding local maxima requires us to take some steps

downbhill.

* Simulated Annealing attempts to find the right trade-
off between uphill and downhill moves:

Start 1n a random state
** Select a random move
* If the move results in improvement, keep it
* If the move does not result in improvement,
keep it with probability P>%.
* Return to **,

Computing P>*

increases. l.e. The

cur move)

* P>*decreases as (E —E

worse the move, the less likely we are to keep it.

* P>*also decreases as T (temperature) decreases.
— High temperature: random search.
— Low temperature: randomized hill climbing.

* If we decrease temperature infinitely slowly, we can

guarantee that the global optimum will be found :)

Genetic Algorithm

* (Basic algorithm due to John Holland, 1975)

* First, contrive a mapping from bit strings to your problem
space.

— Genotype -> Phenotype.
* Next, contrive an objective function for evaluating solutions:
— fitness function.

— F(phenotype) = fitness.

Genetic Algorithm

Generate K bit strings randomly: a population of individuals.
**Evaluate the fitness of each individual.

Assign a probability to each individual proportional to it's fitness.
Generate a new population:

— Select 2 individuals (parents) according to probability assigned

above.

— Crossover: Pick a random bit position, and swap all bits after that

position.
— Mutation: flip individual bits with a small independent probability.
— Repeat until we have K new individuals.

Return to ** unless satisfied.

GA lllustration

24748552

32752411

24415124

32543213

(a)

Initial Population

(Figure from Russel & Norvig, Artifical Intelligence a Modern Approach.)

24 31%

23 29%

20 26%

11 14%

(b)

Fitness Function

32752411

24748552

32752411

24415124

L X

(c)

Selection

32748552

24752411

Yy

32749152

32752124

Y

Y

24752411

24415411

32252124

(d)

Crossover

Y

2441541[7]

(e)

Mutation

Does it Work?

* How well it works has a lot to do with the structure of the

fitness surface.

* Getting it to work well requires carefully engineering the
genotype->phenotype mapping.

* MANY variations:

— Different methods for selecting individuals, rank ordered

instead of proportional, keep the fittest, etc. etc...
— Co-evolving parasites — evolving test cases.

— Independently evolving “island™ populations.

More Recent/Practical Algorithms

* Covariance Matrix Adaptation Evolution Strategy
(CMA-ES)

— Current population is selected from a

multivariate normal distribution.

— Distribution is updated after the population is

evaluated.

CMA-ES

Generation 1 Generation 2 Generation 3

Generation 4 Generation 5 Generation 6

By Sentewolf (talk) (Uploads) - Transferred from en.wikipedia to Commons., Public Domain,
https://commons.wikimedia.org/w/index.php?curid=48100101

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

