Nathan Sprague

August 31, 2012

Agents, Environments, Problems

Search Problems

m We'll begin by considering problems that are:
m Observible
m Discrete
m Known
m Deterministic

m Atomic state representation

Problem Definition

m States

m Initial State

m Actions

m Transition Model:
m RESULT(s, a)

m Goal Test

m Path Cost Function

m Solution : A sequence of actions leading from initial state
to a goal state.

m Optimal Solution : The lowest-cost sequence of actions
leading from initial state to a goal state.

Problems as Graphs

m States are vertices
m Actions are edges

m Costs are weights

Trivial Example

Vacuum World - A vacuuming robot is in one of two possible
locations, either or both of which may be dirty.

m States - Location of robot, presence of dirt
m 2 x 22 = 8 total states

Initial State - Any

Actions

m LEFT, RIGHT - Move the robot (if possible)
m SUCK - Remove dirt from current location (if present)
m All actions are available in all states

m Transition Model:
m All actions have their expected effect.

Goal Test - All locations are clean.
Path Cost - one/step.

Graph Representation

R
(E
L =S 038 | 88
L
S S
R R
(ERTED (EOEED
%8R gR gR gR
L L
S S

Tree Search

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

Figure 3.7 An informal description of the general tree-search and graph-search algorithms. The
parts of GRAPH-SEARCH marked in bold italic are the additions needed to handle repeated states.

A Problem

Graph Search

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the con’%sponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Figure 3.7 An informal description of the general tree-search and graph-search algorithms. The
parts of GRAPH-SEARCH marked in bold italic are the additions needed to handle repeated states.

Breadth-First Search

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node « a node with STATE = problem.INITIAL-STATE, PATH-COST =0
if problem .GOAL-TEST(node.STATE) then return SOLUTION(nade)
frontier « a FIFO queue with node as the only element
explored «— an empty set
loop do
if EMPTY (frontier) then return failure
node « POP(frontier) [* chooses the shallowest node in frontier */
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child «— CHILD-NODE(problem, node, action)
if child.STATE is not in explored or frontier then
if problem .GOAL-TEST(child .STATE) then return SOLUTION(child)
[frontier « INSERT(child, frontier)

Figure 3.11 Breadth-first search on a graph.

Anaysis of Search Algorithms

m Completeness
m Optimality
m Time Complexity

m Space Complexity

Search Algorithms

BFS | DFS | lterative Deepening | Uniform Cost Search

TREE-SEARCH
GRAPH-SEARCH

(See also Fig. 3.21 in the textbook)

