Q-Learning

Reinforcement Learning

e What if we don't know P(s’, | s, a) or R(s)?
e These could be very tedious to specity.
 Two possibilities:

— Learn P(s', | 5, a) and R(s), then apply value iteration.

e Model based reinforcement learning.

— Don't bother to learn P(s'| s,a) and R(s). Just learn U(s)
directly.

* Model free reinforcement learning.

Model Based RL

e Learn P(s'| s, a) and R(s) and apply value iteration.

— Since there is no hidden state P(s’| s, a) and R(s) are easy to
learn.

— Take random actions, then:

transitions from s to s' given a

P(s']s,a)= - ,
total # of transitions from s given a

R(s)=average reward observed in state s

Choosing Actions While Learning

e Previous shide suggested “random actions”.

 Two problems with that:
- Waste time exploring bad actions.

— Lose reward while learning.

Greedy Policies

e One possible solution — always choose the action that
looks best so far.

— Good 1dea?

Exploration vs. Exploitation

 We need to find a trade off between choosing actions
that appear good now (exploitation) , and taking actions
that might turn out to be good later (exploration).

e Reasonable solutions are GLIE — Greedy 1n the Limit
with Infinite Exploration.

Model Free Reintorcement Learning

The goal: learn U(s) without bothering to learn
P(s'ls, a) or R(s).
Helpful?

Even 1f we know the optimal utility function, we can't
choose actions if we don't know the transition function:

s,a)U(s’)

n*(s)zargmaxZP(s'

Q-Learning

e Instead we will learn something slightly different:

- Q(s,a) = the expected value of taking action a in state s, and
acting optimally thereafter.

e ((s,a) has a sitmple relationship with U(s):

U(s)=maxQ(s,a)

a

e If we have Q(s,a), we don't need P(s’ | s,a):

e (s)=argmaxQ (s, a)

a

Q-Learning Update Rule

Recall the Bellman equation:
Uls)=R(s) +ymaxz Pls

a

a)U(s')
From this We can derlve
Os (s)+y 2 P(s’ (s',a')

From this we can get the followmg update rule:

R(s)+ymaxQ(s',a') — Q(s,a)

a !

O(s,a)—0(s,a)+x

s'1s the next state (arrived at after action a), a’ 1s the next
action, « 1s a learning rate.

Unpacking Q-Learning

e The update moves the value of the old estimate in the
direction of the new sample:

CITOr

/\

R(s)+ymaxQ(s',a') — Of(s,a)
new sample of old estimate of

Q(s,a) Q(s,a)

O(s,a)—0(s,a)+

The Q-Learning Algorithm

Initialize Q(s,a) randomly.

Choose actions according to a GLIE policy.

After every action, perform an update:

O(s,a)—0(s,a)+ R(s)+quxQ(s’,a’) — Q(s,a)

a

Convergence to the optimal policy 1s guaranteed.

This 1s really easy to program.

Q-Learning Efficiency

e Q-Learning 1s efficient in terms of the computation
required per action.

« However, Q-learning does not make efficient use of
experience.

e For example, if rewards are sparse, a Q-learning agent
can run for a long time without learning anything.

Problems 1n Reinforcement Learning

 RL (and MDP) algorithms scale reasonably well with the
number of states.

e Unfortunately, the number of the states does not scale
well with the complexity of the problem.

* An example of the curse of dimensionality.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

