Probability




Why Probability?

e It's the right way to look at the world.



Discrete Random Variables

We denote discrete random variables with capital letters.

A boolean random variable may be either true or false
— A = true or A=false.

P(a), or P(A=true) denotes the probability that A 1s true.

Also unconditional probability or prior probability.

P(—a) or P(A=talse) denotes the probability that A 1s not
true.



Discrete Random Variables

e P(a): the fraction of worlds in which A 1s true.

e Pa)=.2 P(—-a)=.8



More Notation

 We can apply boolean operators
— Probability of a AND b: P(a Ab) or P(a,b)
— Probability of a OR b: P(a Vv b)



The Axioms of Probability

e 0<P(a)<1
e P(true) =1 P(false) =0
e P(avb)=P(a) + P(b) —P(a ADb)




A Simple Proot

0<P(a<l1
P(true) = 1, P(false) =0
P(avb)=P(a) + P(b)—P(a Ab)

Prove that P(—-a) =1 — P(a)
- P(a VvV —-a)=P(a) + P(-a) — P(a A—a)
- P(true) = P(a) + P(—a) - P(false)
- 1=P(a) + P(-a) - 0
- P(-a) =1 -P(a)



Multi-valued Random Variables

We can define a random variable that can take on more
than two possible values.

E.g. C1s one of {Vl, Vs e ,VN}

Note, it must be the case that :

Example: W may have the domain {sunny, cloudy,
rainy }.



Conditional Probability

P(a | b), the probability that A 1s true given that B 1s true.
- P(sunny) = .1
— P(sunny | warm) = .3
Definition: P(a|b): P(a/\b)
P(b)
The fraction of worlds in which B i1s true, that also have
A true.

May also be written as the product rule:

P(aAb)=P(alb)P(b)



Conditional Probability

P(a) =.3

P(b) =.1

P(a Ab)= .05
P(alb)=7?



Conditional Probability

P(a) =.3

P(b) =.1

P(a Ab)= .05
P(alb)=.5



Probability Distributions

A probability distribution i1s a complete description of
the probability of all possible assignments to a random
variable.

Examples:
For a boolean variable
- P(A=TRUE) = .1
— P(A=FALSE) = .9
Random variable W from the domain {sunny, cloudy,
rainy }
- P(W)=<2,.7, .1>



Joint Probability Distribution

* A complete description of the probability of all possible
assignments to all variables (atomic event).

Two boolean variables A and B Rooster Crows (C) and
A B Pr ob Weather (W)
rT L C W Pr ob
T F 2
T sunny . 05
F T S
= 5 T cl oudy .2
' T rainy 0
F sunny . 05
F cl oudy .4
F rainy .3



Inference

* Determining the probability of an event of interest, given
everything that we know about the world.

e This 1s easy if we have the joint probability distribution.

o The probability of a proposition is equal to the sum of
the probabilities of the atomic events in which it holds.



Inference Example

A B Pr ob
T T .1
T F .2
F T .5
F F .2

e What is P(A = true)?
e P(a)= 77



Inference Example

A B Pr ob
T T 1
T F .2
F T .5
F F .2

What 1s P(A = true)?
Pa)=.1+.2=.3
In general P(Y):Z P(Y, Z) marginalization.

Here Y and Z may be sets of variables, and the sum 1s
over all possible assignments to the variables Z.



Conditional Inference

C W Pr ob
T sunny . 05
T cl oudy 2

T rainy 0

F sunny . 05
F cl oudy .4

F rainy .3

e P(C=true | W =sunny)?
e Remember that: P(a|b):P(a/\b)

P(b)

e P(C=true | W = sunny) = ??




Conditional Inference

C W Pr ob
sunny 055>

T cl oudy 2

T rainy 0

<E sunny .05 >
F cl oudy .4
F rainy .3

e P(C=true | W =sunny)?
e Remember that: P(a|b):P(a/\b)

P(b)

e P(C=true | W =sunny)= .05/(.05+.05)=.5




“Learning” a Joint Probability
Distribution

 Where does the joint probability distribution come from?

 Maybe we (or an expert) make it up.

 Or we can learn it: (mw)_# instances that match row
# total instances

C W #days Pr ob

T sunny 12 12/ 38 =. 32

T cl oudy 3 3/ 38 =.08

T rainy 0 0/38 =.0

F sunny 8 8/ 38 =.21

F cl oudy 10 10/ 38 =. 26

F rainy 5 5/ 38 =.13

total: 38

ANY PROBLEMS?



Problems with Learning PD

e This will quickly break down 1f we have more than a few
variables.



Independence

e Variables A and B are independent if P(a | b) = P(a)
 We can also write: P(aAb)=P(a)P(b)
- Remember the product rule: P(a /\b):P (a|b) P (b)
e Independence 1s a big deal for probabilistic reasoning.
— Specifying the full joint PD requires exponential storage.
- Learning it requires an exponentially growing amount of data.
— These both become linear if all variables are independent.

— This 1s called factoring the joint distribution.



Bayes' Rule

The most useful identity in Al:
d|h)P(h)

P(d)

Think of & as hypothesis and d as data.
P(d|h) is called likelihood.

P(h|d):P(

likelihood X prior

posterior =
evidence

Why would we know P(d | h) and not P(h | d)?



Diagnosis

P(d|h)P(h)
P(d)

I have a cough, I want to know the probability that I have
pneumonia.

P(h|d)=

P(cough) = .1, P(pneumonia) = .001,
P(cough | pneumonia) = .5

P(pneumonia | cough) = (.5 *.001) /.1 =.005 =.5%




(Sumplistic) Spam Filtering

SPAM NON-SPAM
viagra  discount cs444  count viagra  discount cs444 count
T T T 0 T T T o)
T T F 180 T T F 0
T F T 0 T F T 1
T F F 1200 T = F 3
F T T 8 F T T 6
F T F 600 F T F 20
F F T 12 F F T 70
F F F 6000 = F F 700

Total: 8000 Total: 800



Bayes' Classifier I

Assume a multivalued random variable C that can take
on the values . fori=1 to =K.

Assume M 1nput attributes Xj forj=1to M.
Learn P(X], XZ, ,XM | ¢_i) for each 1.
— Treat this as K different joint PDs.
Given a set of input values (X =u , X =u, ... , X =u ),
1 1 2 2 M M

classification 1s easy (?):

CpredmzargmaxP(Czci|X1=u1,X2=u2,..., X =u )

C.
i



An Aside: MAP vs. ML

e This 1s a maximum a posterior1 (MAP) classifier:

CprediazargmaxP(C=ci|X1=u1, X =u,...X =u)

e We could also consider a maximum likelthood (ML)
classifier:

CprediCtZargmaxP(Xlzul,X2=u2,..., X =u |C=c)

C.
i



An Aside: Conditioning

 Remember marginalization?

P(Y)=2,P(Y,z)
 We also have conditioning:

P(Y)=), P(Y]z)P(z)



Bayes' Classifier 11

CprediCtzargmaxP(C=ci|X1=u1, X =u,,..., XMzum)

 Apply Bayes' rule

P(X

C predict

—argmax
c, P(X —u ,X.=u

e Conditioning:

C predict

=argmax



Bayes' Classifier 111

X =u |[C=c)P(C=c)

C predict

—argmax

P(X,
K
" Z =u,X,=u,,....X |C=c)P(C=c)

e Notice that the denominator 1s the same for all classes.

 We can simplify this to:

CpredmzargmaxP(Xlzul,X2=u2,..., X =u |C=c)P(C=c)

e If your learned distributions are correct, this 1s the best
choice.

 What's the problem?



Naive Bayes' Classitier

It M 1s largish it 1s impossible to learn
PX,X,..,X |c_i).

1 2 M
The solution (?): assume that the XJ are independent

given C (that the symptoms are independent, given the
disease.)

M
P(X, X,..X [e)=]]P(X|c)
j=1
Factorization!

The naive Bayes' classifier:

C predict

=argmax P(C=c )

C.
i

et

P(Xj|ci)



Why 1s that Naive?

e The symptoms probably aren't independent given the
disease.

* Assuming they are allows us to classify based on
thousands of attributes.

e This seems to work pretty well in practice.



An Note on Implementation

e 1f M 1s largish this product can get really small. Too
small.

C”"*" =argmax P(C = c.)

C.
i

et

P(Xj|cl_)
e Solution:

M
Cpredict:argmax logP<C:Cl>+Z logP<X]|Cl)

c, j=1

« Remember that log(ab) = log(a) + log(b)



Continuous Random Variables

e et X be a continuous random variable.

e 1f p(x) 1s a probability density function for X then:

P(a<X§b)=fp(x)dx

0.4

0 5
X

e The probability of any particular x is O.



Probability Density Functions

* An equivalent definition:

P(x—ﬁ<XSx—l-ﬁ)
. 2 2
p(x)=lim

h—0 h

e The ratio of the probability of landing in a region h, over

the area of the region h approaches p(x) as h approaches
0.



Joint Probability Density Functions

e Consider two random variables X and
Y and a two dimensional region R:

P((X,Y)ER)= ff p(x,y)dydx

(x,y)ER
e The volume of the region R bounded u.m..--;--:::::':"'
above by p(x,y) corresponds the the =°°] © ’

o 02T

probability that X and Y will be in R. Em

D-\-._..'.I.
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