Maximum Likelihood Learning

Some material on these is slides borrowed from Andrew Moore's
excellent machine learning tutorials located at:

http://www.cs.cmu.edu/~awm/tutorials/



Parameterized Probability Distributions

Parameterized probability distribution:
P(X)=P(X]0)
0 - The parameters for the distribution.

Trivial discrete example: X 1s a Boolean random
variable 01indicates the probability that it will be true.

0 could also be the mean and covariance of a normal
pdf, all of the joint probability tables in a Bayes' net, etc.




Fitting a Distribution to Data

- Assume we have a set of data points x to x .

s

e The goal 1s to find a distribution that fits that data. I.e.
that could have generated the data.

'

* Two possibilities:

— Maximum likelihood estimate (MLE) find the parameters that
maximize the probability of the data:

A

O=argmax P(x, x,...,x,|0) (welldo this)
A o,

— Maximum a-priori estimate (MAP) find the parameters that are
most probable given the data:

@:czrgnfzaxP(Obc1 X, xN) (not this)
e ’ ’



ML Learning

« We will assume that x to x are iid — independent and
1dentically distributed.

e So we can rewrite our problem like this (factorization):
N

0=argmax | | P(x,0)
6 i=1

e Then we can apply our favorite log trick giving us log
likelihood:

0= argmax Z log(P(x,|0))=argmax LL
0

i=1



Maximizing Log Likelihood

e Just another instance of function maximization.

* One approach, set the partial derivatives to O and solve:
OLL _
00,
oLL _
00,

0

0
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00,

0

e If you can't solve it, gradient descent, or your favorite
search algorithm.



Silly Example

 Parameterized coin: Theta — probability of heads:

e d -- vector of toss data, 4 number of heads, r number of

tails.
P(d|o) = HP (d]6) = 0"(1-0)
L(d|0) = log(P(d|0)) = hlog0+tlog(1—0)
oL _h ot o o h
00 0 1-0 h+t

Remember: 4 log(x)=1/x

X Example borrowed from Russel & Norvig



Normal/Gaussian Distribution

e The most useful and oft-seen probability density function
in the universe:

n
=
tn

2 - . .
e ¢ 18 the variance, and M 1s the mean.



What's So Normal About That?

e The central limit theorem:

— Assume that X i1s the sum of N 11d random values drawn from
some probability distribution.

— As N increases, the distribution of X approaches the normal
distribution.

— This 1s true regardless of the distribution of the random values
being summed.



Fitting A (scalar) Gaussian Model

_(xi_l'l)z
1 20°

N
LL=) lo e
Z g(r\/2Tr

OV2T _—

—(x—p)
1 2(72u
e

0=(u,0)  plx)=

Skip a few steps...
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