Maximum Likelihood Learning

Some material on these is slides borrowed from Andrew Moore's excellent machine learning tutorials located at:

http://www.cs.cmu.edu/~awm/tutorials/

Parameterized Probability Distributions

• Parameterized probability distribution:

$$P(X) = P(X|\theta)$$

- θ The parameters for the distribution.
- Trivial discrete example: X is a Boolean random variable θ indicates the probability that it will be true.

$$\theta = .6$$

$$p(X=TRUE \mid \theta = .6) = .6$$

$$p(X=FALSE \mid \theta = .6) = .4$$

$$\theta = .1$$

$$p(X=TRUE \mid \theta = .1) = .1$$

$$p(X=FALSE \mid \theta = .1) = .9$$

• θ could also be the mean and covariance of a normal pdf, all of the joint probability tables in a Bayes' net, etc.

Fitting a Distribution to Data

- Assume we have a set of data points x_1 to x_N .
- The goal is to find a distribution that fits that data. I.e. that could have generated the data.
- Two possibilities:
 - Maximum likelihood estimate (MLE) find the parameters that maximize the probability of the data:

$$\hat{\theta} = \underset{\theta}{argmax} P(x_{1}, x_{2}, ..., x_{N} | \theta)$$
 (we'll do this)

- Maximum a-priori estimate (MAP) find the parameters that are most probable given the data:

$$\hat{\theta} = \underset{\theta}{argmax} P(\theta | x_{1}, x_{2}, \dots, x_{N}) \quad \text{(not this)}$$

ML Learning

- We will assume that x_1 to x_N are **iid** independent and identically distributed.
- So we can rewrite our problem like this (factorization):

$$\hat{\theta} = \underset{\theta}{argmax} \prod_{i=1}^{N} P(x_i | \theta)$$

• Then we can apply our favorite log trick giving us log likelihood:

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{N} \log(P(x_i|\theta)) = \underset{\theta}{\operatorname{argmax}} LL$$

Maximizing Log Likelihood

- Just another instance of function maximization.
- One approach, set the partial derivatives to 0 and solve:

$$\frac{\partial LL}{\partial \theta_1} = 0$$

$$\frac{\partial LL}{\partial \theta_2} = 0$$

 $\frac{\partial LL}{\partial \theta_{\kappa}} = 0$

• If you can't solve it, gradient descent, or your favorite search algorithm.

Silly Example

- Parameterized coin: Theta probability of heads:
- *d* -- vector of toss data, *h* number of heads, *t* number of tails.

$$P(\boldsymbol{d}|\boldsymbol{\theta}) = \prod_{i=1}^{N} P(d_i|\boldsymbol{\theta}) = \boldsymbol{\theta}^h (1-\boldsymbol{\theta})^t$$

$$L(\boldsymbol{d}|\boldsymbol{\theta}) = log(P(\boldsymbol{d}|\boldsymbol{\theta})) = hlog \boldsymbol{\theta} + tlog(1-\boldsymbol{\theta})$$

$$\frac{\partial L}{\partial \theta} = \frac{h}{\theta} - \frac{t}{1 - \theta} = 0 \quad \to \quad \theta = \frac{h}{h + t}$$

Remember:
$$\frac{d}{dx}\log(x)=1/x$$

Normal/Gaussian Distribution

• The most useful and oft-seen probability density function in the universe:

$$p(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{\left|\frac{-(x-\mu)^2}{2\sigma^2}\right|}$$

• σ^2 is the variance, and μ is the mean.

What's So Normal About That?

• The central limit theorem:

- Assume that *X* is the sum of *N* iid random values drawn from some probability distribution.
- As *N* increases, the distribution of *X* approaches the normal distribution.
- This is true regardless of the distribution of the random values being summed.

Fitting A (scalar) Gaussian Model

$$\theta = (\mu, \sigma) \qquad p(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}} \qquad LL = \sum_{i=1}^{N} log \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x_i-\mu)^2}{2\sigma^2}}$$

Skip a few steps...

$$\frac{\partial LL}{\partial \mu} = -\frac{1}{\sigma^2} \sum_{i=1}^{N} (x_i - \mu) = 0 \qquad \Rightarrow \mu = \frac{\sum_{i=1}^{N} x_i}{N}$$

$$\frac{\partial LL}{\partial \sigma} = -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^{N} (x_i - \mu)^2 = 0 \qquad \Rightarrow \sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$