Linear Regression, Neural Networks, etc.




Gradient Descent

e Many machine learning problems can be cast as
optimization problems

— Define a function that corresponds to learning error. (More on
this later)

— Minimize the function.

e One possible approach (maximization):
1) take the derivative of the function: f'(x)
2) guess a value of x: X
3)move X a little bit according to the derivative: x<x+of'(X)

4) goto 3, repeat.
e Example...



Partial Derivatives

e Derivative of a function of multiple variables, with all
but the variable of interest held constant.

flx,y)=x"+xy°

N

f(x,y)=2x+y’ f,(x,y)=2xy
OR OR
Gf(X,Y):2X+y2 8f(x,y):2Xy

0 X Oy



Gradient

e The gradient is just the generalization of the derivative to
multiple dimensions. , |
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e Gradient descent update: | " |

we—w—aV f(w)



The Brain

e The human brain weighs about three pounds.
e Has around 10'' neurons.

e About 10" connections between neurons (synapses).
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e Neurons communicate using
discrete electrical signals called
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Axon hillock

— Reach axon terminals.

Axon

— Terminals release
neurotransmitters.
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— Postsynaptic neurons respond
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by allowing current to flow in Synaptic
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— If voltage crosses a threshold a Pastapific

spike 1s created

Neuroanatomy, Martin, 1996



Neuron Communication Factoids

Typically neurons have many dendrites (inputs), but only
a single axon (output).

Dendrites tend to be short, while axons can be very long.
— Dendrites passively transmit current.

— Axons actively propagate signals.
Maximum firing rate for neurons 1s about 1000 HZ.

Different synapses have different strengths.

— l.e. a spike may result in more or less current entering the cell.

The strength of synapses changes over time.



What Are Neurons Doing?

By the early 1940's the gist of what individual neurons
were doing was known.

By the 1950's we knew pretty much everything from the
last several slides.

We knew what individual neurons were doing, but not
how they work together to perform computation.

What was needed was an abstract model of the neuron.

The first plausible account came from McCulloch and
Pitts in 1943.



McCulloch Pitts Neurons

Inputs to a neuron can be either active (spiking) or
inactive (not spiking).

Inputs may be excitatory, or inhibitory.
Excitatory inputs are summed.

If the sum exceeds some threshold, then the neuron
becomes active.

If any 1inhibitory input is active, then the cell does not
fire.



McCulloch Pitts Examples
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Great! Logic!

Any logical proposition (or digital circuit) can be
expressed as a network of McCulloch Pitts neurons.

The brain 1s a digital computer!
A nice 1dea, but ...

An 1important piece i1s missing — how could these
networks learn?



Linear Regression — The Neural View

e Input = x, desired output =y, weight = w.

° h(x) =wx

« We are given a set of inputs, and a corresponding set of
outputs, and we need to choose w.

 What's going on geometrically?



[Lines

e h(x) = wx is the equation of a line with a y intercept of 0.
 What is the best value of w?

e How do we find 1t?




Bias Weights

 We need to use the general equation for a line:

h(x) = WX+ w

e This corresponds to a new neural network with one
additional weight, and an input fixed at 1.

W’
0

w
1




Error Metric

e Sum squared error (y is the desired output):

% (w, x +wo))2

e The goal 1s to find a w that minimizes E. How?



The Wrong Way...

« Remember gradient descent?

O Z%(yj—(wlxj+w0))2:

Z<YJ'_(W1xj"'wo))ﬁ(yj'_(wlxj"'wo)): _;(yj_(wlxj'l'w()))xj



Update Rules...

Wl(_wl-l-aZ(yj_h(xj))xj

J

Wo('Wo+aZ(yj_h(xj))



Visualizing Error
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The Right Way...

1%

:Z yj—Wl(Z xj)
! N

Set the partial derivatives to 0, and solve for w's:

Result:
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Multivariate Linear Regression

e Multi-dimensional input vectors:
V=Wt w X+ +w X
e Or:
T

y=w X




Gradient Descent for MVLR

e Error for the mult1 dimensional case:

EZywx

_:Z yj_w xj _xj,i)
j
—Z yw ),

T
 The new update rule: w;€w, +0€Z —W x)xj,i
J

e Vector version: WewHa Y (y;—w' x)x,
J



Analytical Solution

w=(X"X)'X"y

 Where X 1s a matrix with one input per row, y the vector
of target values.



Notice that we get Polynomial Regression for Free

. 2



In-Class Exercise...

e Here 1s the least squares error function for a single point:

E:%(y—wa)2

e Why not try un-squared error (L1 error)?
E= ’ y—w' x‘

=[y—(woxo#w x;+...4w,x,)

* Your task... Develop a gradient descent learning rule for this new
uxu' )
ul

objective function. (helpful to remember that: 4
dx

ul=

wew+a??



In-Class Exercise...

<y_(W0x0+W1X1+...+Wan>> 5

ow

y—=(woxg+w x +.w,x, )

=—x,Xsign(E)

w ew+aXx Xsign(E)




Regression vs. Classification

« Now we have the machinery to fit a line (plane,
hyperplane) to a set of data points - regression.

e What about classification?
e First thought:

— For each data point x, set the value of y to be O or 1, depending
on the class

— Use linear regression to fit the data.

— During classification assume class O if y < .5, assume class 1 if
y>=.3.



Classification Example

e The least squares fit does not
necessarily lead to good
classification.

Classification Boundary




Apply a Sigmoid to the Output

e Let's apply a squashing function to the output of the
network: y=g(w' x), where _

\/

-This also has a biological motivation

-Note that g'(a) = g(a)(1-g(a))



The New Update Rule...

e The partial derivative:

E=(y-g(w'x))

5 =l 2Ll ly=sw' )

l

=—(y-g(w'x))g'(w'x)x,

e The new update rule: wi<-wi+oc(y—g(wa))g '(wa)xl.

e Vector version: w<—w+oc(y—g(wa))g’(wa)x
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