CS444

Nathan Sprague

September 10, 2012

Minimax!

$\operatorname{MINIMAX}(s, d)=$
$=\left\{\begin{array}{l}\operatorname{UTILITY}(s) \\ \max _{a} \operatorname{MINIMAX}(\operatorname{RESULT}(s, a)) \\ \min _{a} \operatorname{MINIMAX}(\operatorname{RESULT}(s, a))\end{array}\right.$

> if TERMINAL-TEST (s) if $\operatorname{PLAYER}(s)=\mathrm{MAX}$ if $\operatorname{PLAYER}(s)=\mathrm{MIN}$

Minimax!

```
function MINIMAX-DECISION(state) returns an action
    return arg max 
function MAX-VALUE(state) returns a utility value
    if TERMINAL-TEST(state) then return UTILITY(state)
    v\leftarrow-\infty
    for each }a\mathrm{ in ActIONS(state) do
        v\leftarrow\operatorname{Max}(v,\operatorname{Min}-\operatorname{ValuE}(\operatorname{Result}(s,a)))
    return v
```

function MIN-VALUE(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
$v \leftarrow \infty$
for each a in ACTIONS(state) do
$v \leftarrow \operatorname{Min}(v, \operatorname{Max}-\operatorname{Value}(\operatorname{Result}(s, a)))$
return v

Figure 5.3 An algorithm for calculating minimax decisions. It returns the action corresponding to the best possible move, that is, the move that leads to the outcome with the best utility, under the assumption that the opponent plays to minimize utility. The functions Max-Value and Min-Value go through the whole game tree, all the way to the leaves, to determine the backed-up value of a state. The notation $\operatorname{argmax}_{a \in S} f(a)$ computes the element a of set S that has the maximum value of $f(a)$.

Minimax!

MAX

MIN

Sequential Rochambeau

■ One game consists of three moves (plys)*.
■ Player one (MAX) selects Paper, Rock or Scissors.

- Player two (MIN) selects one of the other options.
- If MAX picked Paper, MIN may pick Rock or Scissors.

■ MAX is then required to select the only remaining choice.
■ Scoring is based on the last two picks:
■ Rock/Paper: 1/-1
■ Paper/Scissors: 2/-2

- Scissors/Rock: 3/-3
* Really only two, since the third move is forced.

Your Job...

- Draw the game gree.

■ Calculate the minimax value of each state.

- Describe the optimal policy of both players.

Alpha-Beta Pruning

```
function ALPHA-BETA-SEARCH(state) returns an action
    v\leftarrowMAX-VALUE(state, - \infty,+\infty)
    return the action in ACTIONS(state) with value v
function MAX-VALUE(state, }\alpha,\beta)\mathrm{ returns a utility value
    if TERMINAL-TEST(state) then return UTILITY(state)
    v\leftarrow-\infty
    for each a in ActIONS(state) do
        v\leftarrow\operatorname{Max}(v,\operatorname{Min}-\operatorname{ValuE}(\operatorname{Result}(s,a),\alpha,\beta))
        if v\geq\beta}\mathrm{ then return v
        \alpha\leftarrow\operatorname{MAX}(\alpha,v)
    return v
```

function Min-VALUE(state, α, β) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
) $\leftarrow+\infty$
for each a in Actions(state) do
$v \leftarrow \operatorname{Min}(v, \operatorname{MAX}-\operatorname{VaLuE}(\operatorname{Result}(s, a), \alpha, \beta))$
if $v \leq \alpha$ then return v
$\beta \leftarrow \operatorname{Min}(\beta, v)$
return v

Figure 5.7 The alpha-beta search algorithm. Notice that these routines are the same as the

Alpha-Beta Pruning

function ALPHA-BETA-SEARCH(state) returns an action
$v \leftarrow \operatorname{MAX}-\operatorname{VALUE}($ state $,-\infty,+\infty)$
return the action in ACtions(state) with value v
function MAX-VALUE $($ state $, \alpha, \beta)$ returns a utility value
if TERMINAL-TEST(state) then return UTility(state)
$v \leftarrow-\infty$
for each a in Actions(state) do $v \leftarrow \operatorname{Max}(v, \operatorname{Min}-\operatorname{Value}(\operatorname{Result}(s, a), \alpha, \beta))$ if $v \geq \beta$ then return v $\alpha \leftarrow \operatorname{MAX}(\alpha, v)$
return v
function MIN-VALUE (state, α, β) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
) $\leftarrow+\infty$
for each a in Actions(state) do
$v \leftarrow \operatorname{Min}(v, \operatorname{Max}-\operatorname{ValuE}(\operatorname{Result}(s, a), \alpha, \beta))$
if $v \leq \alpha$ then return v
$\beta \leftarrow \operatorname{Min}(\beta, v)$
return v

Figure 5.7 The alpha-beta search algorithm. Notice that these routines are the same as the

Alpha-Beta Pruning

function ALPHA-BETA-SEARCH(state) returns an action
$v \leftarrow \operatorname{MAX}-\operatorname{VALUE}($ state $,-\infty,+\infty)$
return the action in ACtions(state) with value v
function MAX-VALUE $($ state, $\alpha, \beta)$ returns a utility value
if TERMINAL-TEST(state) then return UTility(state)
$v \leftarrow-\infty$
for each a in Actions(state) do $v \leftarrow \operatorname{Max}(v, \operatorname{Min}-\operatorname{Value}(\operatorname{Result}(s, a), \alpha, \beta))$
if $v \geq \beta$ then return v
$\alpha \leftarrow \operatorname{MAX}(\alpha, v)$
return v
function MIN-VALUE (state, α, β) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
) $\leftarrow+\infty$
for each a in Actions(state) do
$v \leftarrow \operatorname{Min}(v, \operatorname{Max}-\operatorname{ValuE}(\operatorname{Result}(s, a), \alpha, \beta))$
if $v \leq \alpha$ then return v
$\beta \leftarrow \operatorname{Min}(\beta, v)$
return v

Figure 5.7 The alpha-beta search algorithm. Notice that these routines are the same as the

Alpha-Beta Pruning

function ALPHA-BETA-SEARCH(state) returns an action
$v \leftarrow \operatorname{MAX}-\operatorname{VALUE}($ state $,-\infty,+\infty)$
return the action in ACTIONS(state) with value v
function MAX-VALUE $($ state, $\alpha, \beta)$ returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
$v \leftarrow-\infty$
for each a in ACTIONS(state) do
$v \leftarrow \operatorname{Max}(v, \operatorname{Min}-\operatorname{ValuE}(\operatorname{Result}(s, a), \alpha, \beta))$
if $v \geq \beta$ then return v
$\alpha \leftarrow \operatorname{MAX}(\alpha, v)$
return v
function Min-VALUE (state, α, β) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
L) $\leftarrow+\infty$
for each a in Actions(state) do
$v \leftarrow \operatorname{Min}(v, \operatorname{MAX}-\operatorname{VaLuE}(\operatorname{Result}(s, a), \alpha, \beta))$
if $v \leq \alpha$ then return v
$\beta \leftarrow \operatorname{Min}(\beta, v)$
return v

Figure 5.7 The alpha-beta search algorithm. Notice that these routines are the same as the

Alpha-Beta Pruning

function ALPHA-BETA-SEARCH(state) returns an action
$v \leftarrow \operatorname{MAX}-\operatorname{VALUE}($ state $,-\infty,+\infty)$
return the action in ACtIONS(state) with value v
function MAX-VALUE $($ state, $\alpha, \beta)$ returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
$v \leftarrow-\infty$
for each a in Actions(state) do
$v \leftarrow \operatorname{Max}(v, \operatorname{Min}-\operatorname{Value}(\operatorname{Result}(s, a), \alpha, \beta))$
if $v \geq \beta$ then return v
$\alpha \leftarrow \operatorname{MAX}(\alpha, v)$
return v
function Min-VALUE (state, α, β) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
) $\leftarrow+\infty$
for each a in Actions(state) do
$v \leftarrow \operatorname{Min}(v, \operatorname{Max}-\operatorname{ValuE}(\operatorname{Result}(s, a), \alpha, \beta))$
if $v \leq \alpha$ then return v
$\beta \leftarrow \operatorname{MiN}(\beta, v)$
return v

Figure 5.7 The alpha-beta search algorithm. Notice that these routines are the same as the

Pruning Rochambeau

Which (if any) search tree nodes will not be visited if we use alpha-beta pruning?

Limited Time...

$H-\operatorname{MINIMAX}(s, d)=$
$=\left\{\begin{array}{l}\operatorname{EVAL}(s) \\ \max _{a} \mathrm{H}-\operatorname{MINIMAX}(\operatorname{RESULT}(s, a), d+1) \\ \min _{a} \operatorname{H}-\operatorname{MiNIMAX}(\operatorname{ReSULT}(s, a), d+1)\end{array}\right.$
if CUTOFF-TEST (s, d) if PLAYER $(s)=$ MAX if $\operatorname{PLAYER}(s)=\mathrm{MIN}$

Games of Chance

■ Can we apply minimax if there is an element of chance?

- Sort of...
$\operatorname{EXPECTIMINIMAX}(s, d)=$
$=\left\{\begin{array}{l}\operatorname{UTILITY}(s) \\ \max _{a} \operatorname{EXPECTIMINIMAX}(\operatorname{RESULT}(s, a)) \\ \min _{a} \operatorname{EXPECTIMINIMAX}(\operatorname{RESULT}(s, a)) \\ \sum_{r} P(R) \operatorname{EXPECTIMINIMAX}(\operatorname{RESULT}(s, r))\end{array}\right.$
if TERMINAL-TEST(s) if PLAYER $(s)=$ MAX if $\operatorname{PLAYER}(s)=\operatorname{MIN}$ if $\operatorname{PLAYER}(s)=\mathrm{CHANCE}$

Games of Chance

Status of Games

Three categories:
■ "Solved"

- Sequential Rochambeau
- tic-tac-toe
- Checkers

■ Best computer player is better than the best human player

■ Chess

- Othello

■ Best human players are better than the best computer players

■ Go (UCT- upper confidence bounds on trees)

- Poker (?)

