Sequential Decision Problems

Decision Theory

e The science of making decisions to maximize returns.
e A probabilistic view:
— We have some set of possible actions A.

— We have a set of possible results S.

— Assume we know P(S | A) — the distribution of results given
actions.

— We assign different value to different states.
» Expressed with a utility function: U(S).

Blackjack Example

e A could be hit or stand 1n blackjack.

e S could be blackjack, bust, or some higher point total.
- U(blackjack) = the pot
- U(bust) =0
— U(higher points) = somewhere in between

« How do we decide which action to take?
— Maximize probability of getting the highest possible return?
— Minimize the change of getting the lowest possible utility?

— Maximize expected utility — amount we will win on average?

Expected Utility

e The amount that we expect to receive for a given action:

Z Ul(s)P(s|a)

seS

 Maximizing expected utility:

argmax Z Ul(s)P(s|a)

acA seS§

Sequential Decisions

* Previous discussion only pertains to making a single
decision.

e More generally, we might need to make a series of
decisions that lead us from one state to the next:

Markov Decision Problems

e Specified by two functions,

— Transition model: P(s’| s, a) expresses the probability that the
system will end up in state s’ if action a 1s taken in state s.

— Reward function: R(s) expresses the immediate reward
associated with each state.

e Our goal is to find « (s) , a mapping from states to
actions that results 1n the highest utility.

 How do we define utility for a sequence of states?
- U([SO) S]) ceey SN])

Utility of a State Sequence

One possibility, sum of rewards:
- U([SO, L SN]) = R(SO) -+ R(s])+...

— Doesn't make sense for infinitely long sequences.

A second possibility, discounted reward:
U([SO, S, ...D:R(SO)+yR<S1)+y2R(S2)+...

Y is a discount factor that ranges from O to 1.

It has the nice property that (if ¥ < 1) the sum will be
finite.

Optimal Policies

« Now we can specify what we mean by an “optimal
policy”.

> Y'R(s) | m

*
T =argmax=FE
T =0

* In other words, we want the policy with the highest
expected sum of discounted reward.

Simple MDP

+ 1

0.1

START

(a) (b)

R(s) = -.04 for all non-terminal states.

Optimal Policies

> | | | | -
A -~ (= A (M=
— — +1
f — R(s)<-1.6284 —0.4278 < R(s) <—0.0850

A - | =] + - |[=]

S b= (=[t] [HHH Y

~0.0221 <R(s) <0 R(s)>0
(a) (b)

State Utility

e First we define the utility of a state with respect to a
policy:

o0

Z Y'R(s,) | m,s,=s

=0

U™(s)=E

e The utility of s 1s equal to the expected discounted
reward we will receive if we start in s.

 What we really want is:

*

Uls)=U" (s):mng

State Utilities

B

3 0.812 0.868 0.918 + 1

2 0.762 . 0.660 |—1

1 0.705 0.655 0.611 0.388

1 2 3 4
R(s) = -.04 for all non-terminal states.

y=1

Optimal Policy

e If we know U(s), we can get T , specifically:

a,s)U"(s')

n*(s):argmaxZP(s'

e All we need now 1s U(s).

The Bellman Equation

We can write the utility of a given state as follows:

U(S)ZR(S)+ymaxZ P(s'
— The value of a state 1s equal to the immediate reward plus
the expected discounted utility of the next state,

assuming we choose the best action.

a,s'|U(s')

It there are N states, we have N instances of the equation
above.

N equations in N unknowns!

Unfortunately, they are non-linear equations.

Value Iteration Algorithm

We can find a solution iteratively.
First, guess U(s) for all s.

Then repeat the following until satisfied:

— for each state s:

Ui+1(s)(—R(s)+ymaxZ P(s’

a’S')Ui<S,)

— where i 1s the iteration number.
This 1s guaranteed to converge to the true U(s).

Converges more quickly for small Y .

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

