Sequential Decision Problems

Decision Theory

- The science of making decisions to maximize returns.
- A probabilistic view:
 - We have some set of possible actions A.
 - We have a set of possible results *S*.
 - Assume we know $P(S \mid A)$ the distribution of results given actions.
 - We assign different value to different states.
 - Expressed with a utility function: U(S).

Blackjack Example

- A could be hit or stand in blackjack.
- S could be blackjack, bust, or some higher point total.
 - U(blackjack) = the pot
 - U(bust) = 0
 - U(higher points) = somewhere in between
- How do we decide which action to take?
 - Maximize probability of getting the highest possible return?
 - Minimize the change of getting the lowest possible utility?
 - Maximize expected utility amount we will win on average?

Expected Utility

• The amount that we expect to receive for a given action:

$$EU(a) = \sum_{s \in S} U(s) P(s|a)$$

• Maximizing expected utility:

$$\underset{a \in A}{\operatorname{argmax}} \sum_{s \in S} U(s) P(s|a)$$

Sequential Decisions

- Previous discussion only pertains to making a single decision.
- More generally, we might need to make a series of decisions that lead us from one state to the next:

$$- S_0, S_1, ..., S_N$$

Markov Decision Problems

- Specified by two functions,
 - Transition model: $P(s' \mid s, a)$ expresses the probability that the system will end up in state s' if action a is taken in state s.
 - Reward function: R(s) expresses the immediate reward associated with each state.
- Our goal is to find $\pi^*(s)$, a mapping from states to actions that results in the highest utility.
- How do we define utility for a sequence of states?
 - $-U([s_0, s_1, ..., s_N])$

Utility of a State Sequence

- One possibility, sum of rewards:
 - $U([s_0, s_1, ..., s_N]) = R(s_0) + R(s_1) + ...$
 - Doesn't make sense for infinitely long sequences.
- A second possibility, discounted reward:

$$U([s_0, s_1, ...]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + ...$$

- γ is a discount factor that ranges from 0 to 1.
- It has the nice property that (if $\gamma < 1$) the sum will be finite.

Optimal Policies

• Now we can specify what we mean by an "optimal policy".

$$\pi^* = \underset{\pi}{argmax} = E \left[\sum_{t=0}^{\infty} \gamma^t R(s_t) \mid \pi \right]$$

• In other words, we want the policy with the highest expected sum of discounted reward.

Simple MDP

R(s) = -.04 for all non-terminal states.

Optimal Policies

State Utility

• First we define the utility of a state with respect to a policy:

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) \mid \pi, s_{0} = s\right]$$

- The utility of *s* is equal to the expected discounted reward we will receive if we start in *s*.
- What we *really* want is:

$$U(s) = U^{\pi^*}(s) = \max_{\pi} E\left[\sum_{t=0}^{\infty} \gamma^t R(s_t) \mid \pi, s_0 = s\right]$$

State Utilities

3	0.812	0.868	0.918	+1
2	0.762		0.660	-1
1	0.705	0.655	0.611	0.388
'	1	2	3	4

R(s) = -.04 for all non-terminal states. $\gamma = 1$

Optimal Policy

• If we know U(s), we can get π^* , specifically:

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|a,s) U^*(s')$$

• All we need now is U(s).

The Bellman Equation

• We can write the utility of a given state as follows:

$$U(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|a,s') U(s')$$

- The value of a state is equal to the immediate reward plus the expected discounted utility of the next state, assuming we choose the best action.
- If there are *N* states, we have *N* instances of the equation above.
- *N* equations in *N* unknowns!
- Unfortunately, they are non-linear equations.

Value Iteration Algorithm

- We can find a solution iteratively.
- First, guess U(s) for all s.
- Then repeat the following until satisfied:
 - for each state s:

$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a} \sum_{s'} P(s'|a, s') U_{i}(s')$$

- where *i* is the iteration number.
- This is guaranteed to converge to the true U(s).
- Converges more quickly for small γ .