Nathan Sprague

September 14, 2012

Wumpus World

555, ZBrogss ~|
4 |ssaEe “heeze—| L
ZBreazs |
3 Stench PIT ~ Bresze
i S
G Y
s555. CBreazg —|
2 [gaag Tz

—; P
“hrecze— | MV | Z Pz |

START.

Wumpus World

14 24 34 44 =Agent 14 24 34 44
B =Breeze
G =Glitter, Gold
OK = Safe square
13 23 33 43 P =Pit 13 23 33 43
S =Stench
V= Visited
W = Wumpus
12 22 32 42 12 22 32 42
P?
OK
21 31 41 1.1 b |4
v
OK OK
@
1.4 24 34 4,4 = Agent 14 24 34 44
P?
B =Breeze
G =Glitter, Gold
OK = Safe square
13y, |28 33 43 P =PIt 13w 43
S =Stench
vV = Visited
W = Wumpus
22 32 42 12 22 32 42
v v
0K OK OK
21 5 31, (41 1,1 21y [, et
v v v v
OK OK OK 0K

Propositional Logic

m Symbols represent propositions that can be true or false.
m (Atomic sentences)

m Complex sentences created from combining atomic
sentences with logical connectives:

Sentence — AtomicSentence | ComplexSentence

AtomicSentence — True | False | Symbol
Symbol — P| Q| R| ...

ComplexSentence — - Sentence
| (Sentence A Sentence)
| (Sentence V Sentence)
| (Sentence = Sentence)
\

(Sentence < Sentence)

Figure 7.7 A BNF (Backus—Naur Form) grammar of sentences in propositional logic.

Semantics of Propositional Logic

P Q -P PAQ PVv@Q P=Q P & Q
false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true

Figure 7.8 Truth tables for the five logical connectives. To use the table to compute, for
example, the value of PV () when P is true and () is false, first look on the left for the row
where P is true and @ is false (the third row). Then look in that row under the PV @ column
to see the result: ¢rue. Another way to look at this is to think of each row as a model, and the
entries under each column for that row as saying whether the corresponding sentence is true
in that model.

Models and Entailment

m A model assigns a value to all variables.
m A possible world.
m Entailment o =

m [follows logically from a.
m In every model in which « is true 3 is true.
m o = if and only if M(a) C M(5).

Example...

m KB = Nothing in [1,1] and Breeze in [1,2]
® ap = no pit in [1,2]

Example...

m KB = Nothing in [1,1] and Breeze in [1,2]
® ap = no pit in [2,2]

Nice Idea, How Do We Implement It?

|ldea, How Do We Implement

function TT-ENTAILS (KB, o) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
cx, the query, a sentence in propositional logic

symbols «— a list of the proposition symbols in KB and o«
return TT-CHECK-ALL(KB, o, symbols, { })

function TT-CHECK-ALL(KB, «, symbols, model) returns true or false
if EMPTY 2(symbols) then
if PL-TRUE2(K B, model) then return PL-TRUEXcv, model)
else return true // when KB is false, always return true
else do

P « FIRST(symbols)

rest +— REST(symbols)

return (TT-CHECK-ALL(KB, o, rest, model U {P = true})
and
TT-CHECK-ALL(KB, a, rest, model U {P = false }))

Figure 7.8 A truth-table enumeration algorithm for deciding propositional entailment. (TT stands
for truth table.) PL-TRUE? returns frue if a sentence holds within a model. The variable model rep-
resents a partial model—an assignment to some of the symbols. The keyword “and” is used here as a
logical operation on its two arguments, returning true or false.

Inference!

m Entailment: o =
m Inference: at; 3
m We want inference algorithms that are:

m Sound
m Complete
m What about TT-ENTAILS?

Inference

m Good news:
m TT-ENTAILS is sound and complete.

m Bad news?

m Worse news: Propositional entailment is co-NP-complete.

Theorem Proving

m Terminology:
m equivalence a = S ifand only if o = 5 and 8 = «

Equivalences

(aNB) = (BAa) commutativity of A
(aVB) = (BVa) commutativity of V
((aAB)YANy) = (aA(BAY)) associativity of A
((avpB)Vy) = (aV(BV7y)) associativity of V
—(-a) = a double-negation elimination
(o« = B) = (-8 = -a) contraposition
(¢ = B) = (-~aV) implication elimination
(¢« & B) = ((a« = B)A(B = «a)) biconditional elimination
—“(aAB) = (-maV-8) deMorgan
—(aVpB) = (maA-F) deMorgan
(an(BV7) = (aANB)V(aA7y)) distributivity of A over V
(aV(BA7Y) = (aVP)A(aVry)) distributivity of V over A
Figure 7.11 Standard logical equivalences. The symbols «, (3, and ~ stand for arbitrary
sentences of propositional logic.

Theorem Proving

m Terminology:

m equivalence: a = ifandonly if « = and 5 = «
m validity/tautology
m satisfiability

m Proof by contradiction:
m o = [if and only if (aw A =3) is unsatisfiable.

Inference and Proofs

Inference Rules: Modus Ponens:

a= 6«

B

And-Elimination:

Q
>
=™

=

Any equivalence...

Inference and Proofs

m Now we have a second way of automating proofs: Search.

m Knowledge base is the state.
m Inference rules are the actions.
m The goal is the sentence we are trying to prove.

Resolution

m How many inference rules do we need?

Resolution

m One.

m Caveat: can only use it on sentences in conjunctive
normal form (CNF)

m (“or clauses “anded together.)
m Example: (AV B)A—=C
m (AV B)is a clause.
m —C is a negative literal. (Also a unit clause.)
m Good news: any sentence in propositional logic can be
efficiently converted to CNF.

Conjunctive Normal Form

m Eliminate < replace a < (3 with (a = 5) A (8 = «)
m Eliminate =: replace a = [with —a V
m Move — inward using De Morgan's law.

m Distribute V over A wherever possible.

Converting to CNF

m (FAAB)&e C

Converting to CNF

m (FAAB)&e C
B (FAAB)= C)AN(C = (-AAB))

Converting to CNF

m (FAAB)&e C
B (FAAB)= C)AN(C = (-AAB))
B (~(-AAB)VC)A(=CV (-AAB))

Converting to CNF

m (FAAB)&e C
(FAAB)= C)A(C=(-AAB))
B (~(-AAB)VC)A(=CV (-AAB))
(

(AV =B)V C) A (~C V (A A B))

Converting to CNF

m (FAANB)& C
(FAAB)= C)A(C= (mAAB))
B (~(-AAB)VC)A(=CV (-AAB))
(
(

5 (AV=B)V C)A(~CV (=AA B))

AV =BV C)A(=CV-A)A(=CV B)

Resolution Inference Rule

Il \/...\//k, myV...Vm,
hV . Vi Viiga VooV iEVYm V..V mi—1Vmj1 V..Vm,

m Where /; and m; are complementary literals. Duplicate literals are
removed.

m Example: (AV BV =C), (CV-DVA)
m Resolves to: AV BV D

Resolution Theorem Proving

m In order to prove KB |~ «,
m Convert KB N =« to CNF.
m Apply resolution rule until:

m No new clauses can be added (KB £ «a)
® You derive the empty clause (KB = «)

Exercise

Complete the following proof using resolution:
KB:

A= B

—(-AAC)

(CAA)

Query:
B

Psuedocode

function PL-RESOLUTION(K B, &) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
«, the query, a sentence in propositional logic

clauses < the set of clauses in the CNF representation of KB A ~«
new «—{ }
loop do
for each pair of clauses C;, Cj in clauses do
resolvents — PL-RESOLVE(C}, C;)
if resolvents contains the empty clause then return true
new «— new U resolvents
if new C clauses then return false
clauses — clauses U new

Figure 7.9 A simple resolution algorithm for propositional logic. The function PL-RESOLVE re-
turns the set of all possible clauses obtained by resolving its two inputs.

Definite Clauses and Horn Clauses

m Definite Clause: Exactly one positive literal:
m (AV-B), (AV-B-C)

m Horn clause: at most one positive literal:
] (A\/ ﬂB), A, (—|B—'C)

Forward Chaining

P = Q 9
LAM = P

BANL = M

ANP = L M
AANB = L I

Forward Chaining

function PL-FC-ENTAILS A KB, ¢) returns true or false
inputs: KB, the knowledge base, a set of propositional definite clauses
¢, the query, a proposition symbol
count + a table, where count[c] is the number of symbols in ¢’s premise
inferred — a table, where inferred|[s] is initially false for all symbols
agenda «— a queue of symbols, initially symbols known to be true in KB

while agenda is not empty do
p < PopP(agenda)
if p = ¢ then return true
if inferred[p] = false then
inferred[p] < true
for each clause ¢ in KB where p is in ¢.PREMISE do
decrement count[c]
if count[c] =0 then add ¢.CONCLUSION to agenda
return false

