### **CS444**

Nathan Sprague

September 14, 2012

# Logic!

## Wumpus World



## Wumpus World

| 1,4            | 2,4       | 3,4 | 4,4 | A = Ager<br>B = Bree<br>G = Glitte<br>OK = Safe |
|----------------|-----------|-----|-----|-------------------------------------------------|
| 1,3            | 2,3       | 3,3 | 4,3 | P = Pit<br>S = Sten<br>V = Visit<br>W = Wun     |
| 1,2<br>OK      | 2,2       | 3,2 | 4,2 |                                                 |
| 1,1<br>A<br>OK | 2,1<br>OK | 3,1 | 4,1 |                                                 |
| - OA           |           | a)  |     |                                                 |
| 1,4            | 2,4       | 3,4 | 4,4 | A = Agei<br>B = Bree<br>G = Glitte              |

| Α  | = Agent         |
|----|-----------------|
| В  | = Breeze        |
| G  | = Glitter, Gold |
| OK | = Safe square   |
| P  | = Pit           |
| S  | = Stench        |

| = Pit<br>= Stench<br>= Visited<br>= Wumpus | 1,3       | 2,3       | 3,3 | 4,3 |
|--------------------------------------------|-----------|-----------|-----|-----|
|                                            | 1,2<br>OK | 2,2<br>P? | 3,2 | 4,2 |
|                                            | 1.1       | 2.1       | 3.1 | 4.1 |

| nt  |    |  |  |
|-----|----|--|--|
| eze | ٠_ |  |  |

| ĺ               |                     | ,      | ĺ   |
|-----------------|---------------------|--------|-----|
| 1,3 W!          | 2,3                 | 3,3    | 4,3 |
| 1,2A<br>S<br>OK | 2,2<br>OK           | 3,2    | 4,2 |
| 1,1<br>V<br>OK  | 2,1<br>B<br>V<br>OK | 3,1 P! | 4,1 |

| -74 | - Agent         |
|-----|-----------------|
| В   | = Breeze        |
| G   | = Glitter, Gold |
| OK  | = Safe square   |
| P   | = Pit           |
| S   | = Stench        |
| V   | = Visited       |
| W   | = Wumpus        |

|   | 1,4        | 2,4<br>P?         | 3,4       | 4,4 |
|---|------------|-------------------|-----------|-----|
| d |            |                   |           |     |
| е | 1,3 W!     | 2,3 A<br>S G<br>B | 3,3 Р?    | 4,3 |
|   | 1,2 s<br>V | 2,2               | 3,2       | 4,2 |
|   | ok         | ok                |           |     |
|   | 1,1        | 2,1<br>B<br>V     | 3,1<br>P! | 4,1 |
|   | ok         | ok                |           |     |

### Propositional Logic

- Symbols represent propositions that can be true or false.
  - (Atomic sentences)
- Complex sentences created from combining atomic sentences with logical connectives:

```
Sentence → AtomicSentence | ComplexSentence

AtomicSentence → True | False | Symbol

Symbol → P | Q | R | ...

ComplexSentence → ¬ Sentence
| (Sentence ∧ Sentence)
| (Sentence ∨ Sentence)
| (Sentence ⇒ Sentence)
| (Sentence ⇒ Sentence)

| (Sentence ⇒ Sentence)

Figure 7.7 A BNF (Backus–Naur Form) grammar of sentences in propositional logic.
```

## Semantics of Propositional Logic

| P     | Q     | $\neg P$ | $P \wedge Q$                      | $P \vee Q$ | $P \Rightarrow Q$ | $P \Leftrightarrow Q$ |
|-------|-------|----------|-----------------------------------|------------|-------------------|-----------------------|
| false | false | true     | $false \\ false \\ false \\ true$ | false      | true              | true                  |
| false | true  | true     |                                   | true       | true              | false                 |
| true  | false | false    |                                   | true       | false             | false                 |
| true  | true  | false    |                                   | true       | true              | true                  |

**Figure 7.8** Truth tables for the five logical connectives. To use the table to compute, for example, the value of  $P \vee Q$  when P is true and Q is false, first look on the left for the row where P is true and Q is false (the third row). Then look in that row under the  $P \vee Q$  column to see the result: true. Another way to look at this is to think of each row as a model, and the entries under each column for that row as saying whether the corresponding sentence is true in that model.

#### Models and Entailment

- A model assigns a value to all variables.
  - A possible world.
- Entailment  $\alpha \models \beta$ 
  - lacksquare eta follows logically from  $\alpha$ .
  - In every model in which  $\alpha$  is true  $\beta$  is true.
  - lacktriangledown  $\alpha \models \beta$  if and only if  $M(\alpha) \subseteq M(\beta)$ .

## Example...



- KB = Nothing in [1,1] and Breeze in [1,2]
- $\alpha_2 = \text{no pit in } [1,2]$

## Example...



- KB = Nothing in [1,1] and Breeze in [1,2]
- $\alpha_2 = \text{no pit in } [2,2]$

### Nice Idea, How Do We Implement It?

### Nice Idea, How Do We Implement It?

```
function TT-ENTAILS %(KB, α) returns true or false inputs: KB, the knowledge base, a sentence in propositional logic α, the query, a sentence in propositional logic symbols ← a list of the proposition symbols in KB and α return TT-CHECK-ALL(KB, α, symbols, { })

function TT-CHECK-ALL(KB, α, symbols, model) returns true or false if EMPTY?(symbols) then if PL-TRUE?(KB, model) then return PL-TRUE?(α, model) else return true l' when KB is false, always return true else do P \leftarrow \text{FIRST}(symbols) rest \leftarrow \text{REST}(symbols) rest \leftarrow \text{REST}(symbols) return (TT-CHECK-ALL(KB, α, rest, model ∪ {P = true}) and TT-CHECK-ALL(KB, α, rest, model ∪ {P = false}))
```

Figure 7.8 A truth-table enumeration algorithm for deciding propositional entailment. (TT stands for truth table.) PL-TRUE? returns *true* if a sentence holds within a model. The variable *model* represents a partial model—an assignment to some of the symbols. The keyword "and" is used here as a logical operation on its two arguments, returning *true* or *false*.

### Inference!

- Entailment:  $\alpha \models \beta$
- Inference:  $\alpha \vdash_i \beta$
- We want inference algorithms that are:
  - Sound
  - Complete
  - What about TT-ENTAILS?

### Inference

- Good news:
  - TT-ENTAILS is sound and complete.
- Bad news?
- Worse news: Propositional entailment is co-NP-complete.

### Theorem Proving

- Terminology:
  - lacktriangleq equivalence  $\alpha \equiv \beta$  if and only if  $\alpha \models \beta$  and  $\beta \models \alpha$

### Equivalences

```
 \begin{array}{l} (\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Rightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv ((\alpha \wedge \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{de Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{de Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{array}
```

**Figure 7.11** Standard logical equivalences. The symbols  $\alpha$ ,  $\beta$ , and  $\gamma$  stand for arbitrary sentences of propositional logic.

### Theorem Proving

- Terminology:
  - lacktriangleq equivalence:  $\alpha \equiv \beta$  if and only if  $\alpha \models \beta$  and  $\beta \models \alpha$
  - validity/tautology
  - satisfiability
- Proof by contradiction:
  - $\bullet$   $\alpha \models \beta$  if and only if  $(\alpha \land \neg \beta)$  is unsatisfiable.

### Inference and Proofs

Inference Rules: Modus Ponens:

$$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$$

And-Elimination:

$$\frac{\alpha \wedge \beta}{\beta}$$

Any equivalence...

### Inference and Proofs

- Now we have a second way of automating proofs: Search.
  - Knowledge base is the state.
  - Inference rules are the actions.
  - The goal is the sentence we are trying to prove.

### Resolution

■ How many inference rules do we need?

#### Resolution

- One.
- Caveat: can only use it on sentences in conjunctive normal form (CNF)
  - ("or clauses "anded together.)
  - **Example:**  $(A \lor B) \land \neg C$ 
    - $\blacksquare$   $(A \lor B)$  is a clause.
    - $\blacksquare \neg C$  is a negative literal. (Also a unit clause.)
- Good news: any sentence in propositional logic can be efficiently converted to CNF.

### Conjunctive Normal Form

- Eliminate  $\Leftrightarrow$ : replace  $\alpha \Leftrightarrow \beta$  with  $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$
- Eliminate  $\Rightarrow$ : replace  $\alpha \Rightarrow \beta$  with  $\neg \alpha \lor \beta$
- Move ¬ inward using De Morgan's law.
- Distribute ∨ over ∧ wherever possible.

 $(\neg A \land B) \Leftrightarrow C$ 

- $\blacksquare$   $(\neg A \land B) \Leftrightarrow C$
- $((\neg A \land B) \Rightarrow C) \land (C \Rightarrow (\neg A \land B))$

- $\blacksquare$   $(\neg A \land B) \Leftrightarrow C$
- $((\neg A \land B) \Rightarrow C) \land (C \Rightarrow (\neg A \land B))$
- $(\neg(\neg A \land B) \lor C) \land (\neg C \lor (\neg A \land B))$

- $\blacksquare$   $(\neg A \land B) \Leftrightarrow C$
- $((\neg A \land B) \Rightarrow C) \land (C \Rightarrow (\neg A \land B))$
- $(\neg(\neg A \land B) \lor C) \land (\neg C \lor (\neg A \land B))$
- $((A \vee \neg B) \vee C) \wedge (\neg C \vee (\neg A \wedge B))$

- $\blacksquare$   $(\neg A \land B) \Leftrightarrow C$
- $((\neg A \land B) \Rightarrow C) \land (C \Rightarrow (\neg A \land B))$
- $(\neg(\neg A \land B) \lor C) \land (\neg C \lor (\neg A \land B))$
- $((A \vee \neg B) \vee C) \wedge (\neg C \vee (\neg A \wedge B))$
- $(A \vee \neg B \vee C) \wedge (\neg C \vee \neg A) \wedge (\neg C \vee B)$

#### Resolution Inference Rule

$$\frac{\mathit{l}_1 \vee ... \vee \mathit{l}_k, \ \mathit{m}_1 \vee ... \vee \mathit{m}_n}{\mathit{l}_1 \vee ... \vee \mathit{l}_{i-1} \vee \mathit{l}_{i+1} \vee ... \vee \mathit{l}_k \vee \mathit{m}_1 \vee ... \vee \mathit{m}_{j-1} \vee \mathit{m}_{j+1} \vee ... \vee \mathit{m}_n}$$

- Where  $l_i$  and  $m_j$  are complementary literals. Duplicate literals are removed.
- Example:  $(A \lor B \lor \neg C)$ ,  $(C \lor \neg D \lor A)$
- Resolves to:  $A \lor B \lor \neg D$

### Resolution Theorem Proving

- In order to prove  $KB \models \alpha$ ,
  - Convert  $KB \land \neg \alpha$  to CNF.
  - Apply resolution rule until:
    - No new clauses can be added  $(KB \not\models \alpha)$
    - You derive the empty clause ( $KB \models \alpha$ )

### Exercise

#### Complete the following proof using resolution:

KB:

$$A \Rightarrow B 
\neg(\neg A \land C) 
(C \land A)$$

Query:

В

#### Psuedocode

```
function PL-RESOLUTION(KB, \alpha) returns true or false inputs: KB, the knowledge base, a sentence in propositional logic \alpha, the query, a sentence in propositional logic clauses \leftarrow the set of clauses in the CNF representation of KB \land \neg \alpha new \leftarrow \{\} loop do for each pair of clauses C_i, C_j in clauses do resolvents \leftarrow PL-RESOLVE(C_i, C_j) if resolvents contains the empty clause then return true new \leftarrow new \cup resolvents if new \subseteq clauses then return false clauses \leftarrow clauses \cup new
```

Figure 7.9 A simple resolution algorithm for propositional logic. The function PL-RESOLVE returns the set of all possible clauses obtained by resolving its two inputs.

## Efficiency?

#### Definite Clauses and Horn Clauses

- Definite Clause: Exactly one positive literal:
  - $(A \vee \neg B), (A \vee \neg B \neg C)$
- Horn clause: at most one positive literal:
  - $\bullet (A \vee \neg B), A, (\neg B \neg C)$

## Forward Chaining

$$\begin{array}{l} P \, \Rightarrow \, Q \\ L \wedge M \, \Rightarrow \, P \\ B \wedge L \, \Rightarrow \, M \\ A \wedge P \, \Rightarrow \, L \\ A \wedge B \, \Rightarrow \, L \\ A \\ B \end{array}$$



### Forward Chaining

```
function PL-FC-ENTAILS?(KB, q) returns true or false inputs: KB, the knowledge base, a set of propositional definite clauses q, the query, a proposition symbol count \leftarrow a table, where count\{c\} is the number of symbols in c's premise inferred \leftarrow a table, where inferred\{s\} is initially false for all symbols agenda \leftarrow a queue of symbols, initially symbols known to be true in KB while agenda is not empty \mathbf{do} p \leftarrow POP(agenda) if p = q then return true if inferred\{p\} = false then inferred\{p\} = false then inferred\{p\} \leftarrow true for each clause c in KB where p is in c-PREMISE \mathbf{do} decrement count\{c\} if count\{c\} = 0 then add c-CONCLUSION to agenda return false
```