Nathan Sprague

September 5, 2012

Consider This Problem...

Uniform Cost Search

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node «— anode with STATE = problem.INITIAL-STATE, PATH-COST =0
frontier «— a priority queue ordered by PATH-COST, with node as the only element
explored < an empty set
loop do
if EMPTY?(frontier) then return failure
node < POP(frontier) /* chooses the lowest-cost node in frontier */
if problem .GOAL-TEST(node.STATE) then return SOLUTION(node)
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child «— CHILD-NODE(problem, node, action)
if child.STATE is not in explored or frontier then
frontier < INSERT(child, frontier)
else if child. STATE is in frontier with higher PATH-COST then &
replace that frontier node with child

Figure 3.13 Uniform-cost search on a graph. The algorithm is identical to the general graph search
algorithm in Figure ??, except for the use of a priority queue and the addition of an extra check in case
a shorter path to a frontier state is discovered. The data structure for frontier needs to support efficient
membership testing, so it should combine the capabilities of a priority queue and a hash table.

Reminder... Search Nodes

Node ACTION = Right

PATH-COST = 6

STATE

HH

What We Really Want...

f(n) = g(n) + r(n)

Where,

g(n) = cost to reach node n.

r(n) = minimum cost to reach the goal, starting at n.

What We Settle For...

f(n) = g(n) + h(n)

Where,

g(n) = cost to reach node n.

h(n) = Estimate of the minimum cost to reach the goal,

starting at n.

Using f(n) to select nodes from the frontier gives us A*.

m UCS

m Complete
m Optimal

m A*
m Complete
m Optimal (If h(n) meets certain conditions)
m Potentially much faster than UCS

m A* is optimal for TREE-SEARCH if h(n) is admissible.
m A" is optimal for GRAPH-SEARCH if h(n) is consistent.

m Admissible

m h(n) never overestimates the true cost to goal.
m Consistent

m h(n) <= c(n,a,n")+ h(n')

Examples...

8-Puzzle

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8

Start State Goal State

